The Embedded Systems Design Challenge?

Thomas A. Henzinger1 and Joseph Sifakis2

1 EPFL, Lausanne

2 VERIMAG, Grenoble

Abstract. We summarize some current trends in embedded systems

design and point out some of their characteristics, such as the chasm between

analytical and computational models, and the gap between safetycritical

and best-effort engineering practices. We call for a coherent scientific

foundation for embedded systems design, and we discuss a few key

demands on such a foundation: the need for encompassing several manifestations

of heterogeneity, and the need for constructivity in design. We

believe that the development of a satisfactory Embedded Systems Design

Science provides a timely challenge and opportunity for reinvigorating

computer science.

1 Motivation

Computer Science is going through a maturing period. There is a perception

that many of the original, defining problems of Computer Science either have

been solved, or require an unforeseeable breakthrough (such as the P versus NP

question). It is a reflection of this view that many of the currently advocated

challenges for Computer Science research push existing technology to the limits

(e.g., the semantic web [4]; the verifying compiler [15]; sensor networks [6]), to

new application areas (such as biology [12]), or to a combination of both (e.g.,

nanotechnologies; quantum computing). Not surprisingly, many of the brightest

students no longer aim to become computer scientists, but choose to enter

directly into the life sciences or nanoengineering [8].

Our view is different. Following [18, 22], we believe that there lies a large uncharted

territory within the science of computing. This is the area of embedded

systems design. As we shall explain, the current paradigms of Computer Science

do not apply to embedded systems design: they need to be enriched in

order to encompass models and methods traditionally found in Electrical Engineering.

Embedded systems design, however, should not and cannot be left to

the electrical engineers, because computation and software are integral parts of

embedded systems. Indeed, the shortcomings of current design, validation, and

maintenance processes make software, paradoxically, the most costly and least

? Supported in part by the ARTIST2 European Network of Excellence on Embedded

Systems Design, by the NSF ITR Center on Hybrid and Embedded Software Systems

(CHESS), and by the SNSF NCCR on Mobile Information and Communication

Systems (MICS).

reliable part of systems in automotive, aerospace, medical, and other critical applications.

Given the increasing ubiquity of embedded systems in our daily lives,

this constitutes a unique opportunity for reinvigorating Computer Science.

In the following we will lay out what we see as the Embedded Systems Design

Challenge. In our opinion, the Embedded Systems Design Challenge raises not

only technology questions, but more importantly, it requires the building of a

new scientific foundation —a foundation that systematically and even-handedly

integrates, from the bottom up, computation and physicality [14].

2 Current Scientific Foundations for Systems Design,

and their Limitations

2.1 The Embedded Systems Design Problem

What is an embedded system? An embedded system is an engineering artifact

involving computation that is subject to physical constraints. The physical

constraints arise through two kinds of interactions of computational processes

with the physical world: (1) reaction to a physical environment, and (2) execution

on a physical platform. Accordingly, the two types of physical constraints

are reaction constraints and execution constraints. Common reaction constraints

specify deadlines, throughput, and jitter; they originate from the behavioral requirements

of the system. Common execution constraints put bounds on available

processor speeds, power, and hardware failure rates; they originate from the

implementation requirements of the system. Reaction constraints are studied in

control theory; execution constraints, in computer engineering. Gaining control

of the interplay of computation with both kinds of constraints, so as to meet a

given set of requirements, is the key to embedded systems design.

Systems design in general. Systems design is the process of deriving, from

requirements, a model from which a system can be generated more or less automatically.

A model is an abstract representation of a system. For example,

software design is the process of deriving a program that can be compiled; hardware

design, the process of deriving a hardware description from which a circuit

can be synthesized. In both domains, the design process usually mixes bottom-up

and top-down activities: the reuse and adaptation of existing component models;

and the successive refinement of architectural models in order to meet the given

requirements.

Embedded systems design. Embedded systems consist of hardware, software,

and an environment. This they have in common with most computing systems.

However, there is an essential difference between embedded and other computing

systems: since embedded systems involve computation that is subject to physical

constraints, the powerful separation of computation (software) from physicality

(platform and environment), which has been one of the central ideas enabling

the science of computing, does not work for embedded systems. Instead, the

design of embedded systems requires a holistic approach that integrates essential

paradigms from hardware design, software design, and control theory in a

consistent manner.

We postulate that such a holistic approach cannot be simply an extension of

hardware design, nor of software design, but must be based on a new foundation

that subsumes techniques from both worlds. This is because current design

theories and practices for hardware, and for software, are tailored towards the

individual properties of these two domains; indeed, they often use abstractions

that are diametrically opposed. To see this, we now have a look at the abstractions

that are commonly used in hardware design, and those that are used in

software design.

2.2 Analytical versus Computational Modeling

Hardware versus software design. Hardware systems are designed as the

composition of interconnected, inherently parallel components. The individual

components are represented by analytical models (equations), which specify their

transfer functions. These models are deterministic (or probabilistic), and their

composition is defined by specifying how data flows across multiple components.

Software systems, by contrast, are designed from sequential components, such

as objects and threads, whose structure often changes dynamically (components

are created, deleted, and may migrate). The components are represented by

computational models (programs), whose semantics is defined operationally by

an abstract execution engine (also called a virtual machine, or an automaton).

Abstract machines may be nondeterministic, and their composition is defined by

specifying how control flows across multiple components; for instance, the atomic

actions of independent processes may be interleaved, possibly constrained by a

fixed set of synchronization primitives.

Thus, the basic operation for constructing hardware models is the composition

of transfer functions; the basic operation for constructing software models is

the product of automata. These are two starkly different views for constructing

dynamical systems from basic components: one analytical (i.e., equation-based),

the other computational (i.e., machine-based). The analytical view is prevalent

in Electrical Engineering; the computational view, in Computer Science: the

netlist representation of a circuit is an example for an analytical model; any

program written in an imperative language is an example for a computational

model. Since both types of models have very different strengths and weaknesses,

the implications on the design process are dramatic.

Analytical and computational models offer orthogonal abstractions.

Analytical models deal naturally with concurrency and with quantitative constraints,

but they have difficulties with partial and incremental specifications

(nondeterminism) and with computational complexity. Indicatively, equationbased

models and associated analytical methods are used not only in hardware

design and control theory, but also in scheduling and in performance evaluation

(e.g., in networking).

Computational models, on the other hand, naturally support nondeterministic

abstraction hierarchies and a rich theory of computational complexity, but

they have difficulties taming concurrency and incorporating physical constraints.

Many major paradigms of Computer Science (e.g., the Turing machine; the

thread model of concurrency; the structured operational semantics of programming

languages) have succeeded precisely because they abstract away from all

physical notions of concurrency and from all physical constraints on computation.

Indeed, whole subfields of Computer Science are built on and flourish

because of such abstractions: in operating systems and distributed computing,

both time-sharing and parallelism are famously abstracted to the same concept,

namely, nondeterministic sequential computation; in algorithms and complexity

theory, real time is abstracted to big-O time, and physical memory to big-O

space. These powerful abstractions, however, are largely inadequate for embedded

systems design.

Analytical and computational models aim at different system requirements.

The differences between equation-based and machine-based design are

reflected in the type of requirements they support well. System designers deal

with two kinds of requirements. Functional requirements specify the expected

services, functionality, and features, independent of the implementation. Extrafunctional

requirements specify mainly performance, which characterizes the efficient

use of real time and of implementation resources; and robustness, which

characterizes the ability to deliver some minimal functionality under circumstances

that deviate from the nominal ones. For the same functional requirements,

extra-functional properties can vary depending on a large number of

factors and choices, including the overall system architecture and the characteristics

of the underlying platform.

Functional requirements are naturally expressed in discrete, logic-based formalisms.

However, for expessing many extra-functional requirements, real-valued

quantities are needed to represent physical constraints and probabilities. For

software, the dominant driver is correct functionality, and even performance and

robustness are often specified discretely (e.g., number of messages exchanged;

number of failures tolerated). For hardware, continuous performance and robustness

measures are more prominent and refer to physical resource levels such

as clock frequency, energy consumption, latency, mean-time to failure, and cost.

For embedded systems integrated in mass-market products, the ability to quantify

trade-offs between performance and robustness, under given technical and

economic constraints, is of strategic importance.

Analytical and computational models support different design processes.

The differences between models based on data flow and models based on

control flow have far-reaching implications on design methods. Equation-based

modeling yields rich analytical tools, especially in the presence of stochastic behavior.

Moreover, if the number of different basic building blocks is small, as it

is in circuit design, then automatic synthesis techniques have proved extraordinarily

successful in the design of very large systems, to the point of creating an

entire industry (Electronic Design Automation). Machine-based models, on the

other hand, while sacrificing powerful analytical and synthesis techniques, can

be executed directly. They give the designer more fine-grained control and provide

a greater space for design variety and optimization. Indeed, robust software

architectures and efficient algorithms are still individually designed, not automatically

generated, and this will likely remain the case for some time to come.

The emphasis, therefore, shifts away from design synthesis to design verification

(proof of correctness).

Embedded systems design must even-handedly deal with both: with computation

and physical constraints; with software and hardware; with abstract machines

and transfer functions; with nondeterminism and probabilities; with functional

and performance requirements; with qualitative and quantitative analysis; with

booleans and reals. This cannot be achieved by simple juxtaposition of analytical

and computational techniques, but requires their tight integration within a new

mathematical foundation that spans both perspectives.

3 Current Engineering Practices for Embedded Systems

Design, and their Limitations

3.1 Model-based Design

Language-based and synthesis-based origins. Historically, many methodologies

for embedded systems design trace their origins to one of two sources:

there are language-based methods that lie in the software tradition, and synthesisbased

methods that come out of the hardware tradition. A language-based approach

is centered on a particular programming language with a particular target

run-time system. Examples include Ada and, more recently, RT-Java [5]. For

these languages, there are compilation technologies that lead to event-driven

implementations on standardized platforms (fixed-priority scheduling with preemption).

The synthesis-based approaches, on the other hand, have evolved

from hardware design methodologies. They start from a system description in

a tractable (often structural) fragment of a hardware description language such

as VHDL and Verilog and, ideally automatically, derive an implementation that

obeys a given set of constraints.

Implementation independence. Recent trends have focused on combining

both language-based and synthesis-based approaches (hardware/software codesign)

and on gaining, during the early design process, maximal independence

from a specific implementation platform. We refer to these newer aproaches collectively

as model-based, because they emphasize the separation of the design

level from the implementation level, and they are centered around the semantics

of abstract system descriptions (rather than on the implementation semantics).

Consequently, much effort in model-based approaches goes into developing efficient

code generators. We provide here only a short and incomplete selection of

some representative methodologies.

Model-based methodologies. The synchronous languages, such as Lustre

and Esterel [11], embody an abstract hardware semantics (synchronicity) within

different kinds of software structures (functional; imperative). Implementation

technologies are available for several platforms, including bare machines and

time-triggered architectures. Originating from the design automation community,

SystemC [19] also chooses a synchronous hardware semantics, but allows

for the introduction of asynchronous execution and interaction mechanisms from

software (C++). Implementations require a separation between the components

to be implemented in hardware, and those to be implemented in software; different

design-space exploration techniques provide guidance in making such partitioning

decisions. A third kind of model-based approaches are built around a

class of popular languages exemplified by MATLAB Simulink, whose semantics

is defined operationally through its simulation engine.

More recent modeling languages, such as UML [20] and AADL [10], attempt to

be more generic in their choice of semantics and thus bring extensions in two

directions: independence from a particular programming language; and emphasis

on system architecture as a means to organize computation, communication,

and constraints. We believe, however, that these attempts will ultimately fall

short, unless they can draw on new foundational results to overcome the current

weaknesses of model-based design: the lack of analytical tools for computational

models to deal with physical constraints; and the difficulty to automatically

transform noncomputational models into efficient computational ones. This leads

us to the key need for a better understanding of relationships and transformations

between heterogeneous models.

Model transformations. Central to all model-based design is an effective theory

of model transformations. Design often involves the use of multiple models

that represent different views of a system at different levels of granularity. Usually

design proceeds neither strictly top-down, from the requirements to the

implementation, nor strictly bottom-up, by integrating library components, but

in a less directed fashion, by iterating model construction, model analysis, and

model transformation. Some transformations between models can be automated;

at other times, the designer must guide the model construction. The ultimate

success story in model transformation is the theory of compilation: today, it

is difficult to manually improve on the code produced by a good optimizing

compiler from programs (i.e., computational models) written in a high-level language.

On the other hand, code generators often produce inefficient code from

equation-based models: fixpoints of equation sets can be computed (or approximated)

iteratively, but more efficient algorithmic insights and data structures

must be supplied by the designer.

For extra-functional requirements, such as timing, the separation of humanguided

design decisions from automatic model transformations is even less well

understood. Indeed, engineering practice often relies on a ‘trial-and-error’ loop

of code generation, followed by test, followed by redesign (e.g., priority tweaking

when deadlines are missed). An alternative is to develop high-level programming

languages that can express reaction constraints, together with compilers

that guarantee the preservation of the reaction constraints on a given execution

platform [13]. Such a compiler must mediate between the reaction constraints

specified by the program, such as timeouts, and the execution constraints of the

platform, typically provided in the form of worst-case execution times.We believe

that an extension of this approach to other extra-functional dimensions, such as

power consumption and fault tolerance, is a promising direction of investigation.

3.2 Critical versus Best-Effort Engineering

Guaranteeing safety versus optimizing performance. Today’s systems engineering

methodologies can be classified also along another axis: critical systems

engineering, and best-effort systems engineering. The former tries to guarantee

system safety at all costs, even when the system operates under extreme conditions;

the latter tries to optimize system performance (and cost) when the

system operates under expected conditions. Critical engineering views design

as a constraint-satisfaction problem; best-effort engineering, as an optimization

problem.

Critical systems engineering is based on worst-case analysis (i.e., conservative

approximations of the system dynamics) and on static resource reservation. For

tractable conservative approximations to exist, execution platforms often need

to be simplified (e.g., bare machines without operating systems; processor architectures

that allow time predictability for code execution). Typical examples

of such approaches are those used for safety-critical systems in avionics. Realtime

constraint satisfaction is guaranteed on the basis of worst-case execution

time analysis and static scheduling. The maximal necessary computing power is

made available at all times. Dependability is achieved mainly by using massive

redundancy, and by statically deploying all equipment for failure detection and

recovery.

Best-effort systems engineering, by contrast, is based on average-case (rather

than worst-case) analysis and on dynamic resource allocation. It seeks the efficient

use of resources (e.g., optimization of throughput, jitter, or power) and is

used for applications where some degradation or even temporary denial of service

is tolerable, as in telecommunications. The ‘hard’ worst-case requirements

of critical systems are replaced by ‘soft’ QoS (quality-of-service) requirements.

For example, a hard deadline is either met or missed; for a soft deadline, there

is a continuum of different degrees of satisfaction. QoS requirements can be enforced

by adaptive (feedback-based) scheduling mechanisms, which adjust some

system parameters at run-time in order to optimize performance and to recover

from deviations from nominal behavior. Service may be denied temporarily by

admission policies, in order to guarantee that QoS levels stay above minimum

thresholds.

A widening gap. The two approaches —critical and best-effort engineering—

are largely disjoint. This is reflected by the separation between ‘hard’ and ‘soft’

real time. They correspond to different research communities and different practices.

Hard approaches rely on static (design-time) analysis; soft approaches, on

dynamic (run-time) adaptation. Consequently, they adopt different models of

computation and use different execution platforms, middleware, and networks.

For instance, time-triggered technologies are considered to be indispensable for

drive-by-wire automotive systems [17]. Most safety-critical systems adopt very

simple static scheduling principles, either fixed-priority scheduling with preemption,

or round-robin scheduling for synchronous execution. It is often said that

such a separation is inevitable for systems with uncertain environments. Meeting

hard constraints and making the best possible use of the available resources

seem to be two conflicting requirements. The hard real-time approach leads to

low utilization of system resources. On the other hand, soft approaches take the

risk of temporary unavailability.

We believe that, left unchecked, the gap between the two approaches will continue

to widen. This is because the uncertainties in embedded systems design

keep increasing for two reasons. First, as embedded systems are deployed in a

greater variety of situations, their environments are less perfectly known, with

greater distances between worst-case and expected behaviors. Second, because

of the rapid progress in VLSI design, embedded systems are implemented on

sophisticated, hardware/software layered multicore architectures with caches,

pipelines, and speculative execution. The ensuing difficulty of accurate worstcase

analysis makes conservative, safety-critical solutions ever more expensive,

in both resource and design cost, in comparison to best-effort solutions. The divide

between critical and best-effort engineering already leads often to a physical

separation between the critical and noncritical parts of a system, each running

on dedicated hardware or during dedicated time slots. As the gap between worstcase

and average-case solutions increases, such separated architectures are likely

to become more prevalent.

Bridging the gap. We think that technological trends oblige us to revise the

dual vision and separation between critical and best-effort practices. The increasing

computing power of system-on-chip and network-on-chip technologies

allows the integration of critical and noncritical applications on a single chip.

This reduces communication costs and increases hardware reliability. It also allows

a more rational and cost-effective management of resources. To achieve this,

we need methods for guaranteeing a sufficiently strong, but not absolute, separation

between critical and noncritical components that share common resources.

In particular, design techniques for adaptive systems should make flexible use of

the available resources by taking advantage of any complementarities between

hard and soft constraints. One possibility may be to treat the satisfaction of

critical requirements as minimal guaranteed QoS level. Such an approach would

require, once again, the integration of boolean-valued and quantitative methods.

4 Two Demands on a Solution

Heterogeneity and constructivity. Our vision is to develop an Embedded

Systems Design Science that even-handedly integrates analytical and computational

views of a system, and that methodically quantifies trade-offs between

critical and best-effort engineering decisions. Two opposing forces need to be addressed

for setting up such an Embedded Systems Design Science. These correspond

to the needs for encompassing heterogeneity and achieving constructivity

during the design process. Heterogeneity is the property of embedded systems

to be built from components with different characteristics. Heterogeneity has

several sources and manifestations (as will be discussed below), and the existing

body of knowledge is largely fragmented into unrelated models and corresponding

results. Constructivity is the possibility to build complex systems that meet

given requirements, from building blocks and glue components with known properties.

Constructivity can be achieved by algorithms (compilation and synthesis),

but also by architectures and design disciplines.

The two demands of heterogeneity and constructivity pull in different directions.

Encompassing heterogeneity looks outward, towards the integration of theories

to provide a unifying view for bridging the gaps between analytical and computational

models, and between critical and best-effort techniques. Achieving

constructivity looks inward, towards developing a tractable theory for system

construction. Since constructivity is most easily achieved in restricted settings,

an Embedded Systems Design Science must provide the means for intelligently

balancing and trading off both ambitions.

4.1 Encompassing Heterogeneity

System designers deal with a large variety of components, each having different

characteristics, from a large variety of viewpoints, each highlighting different

dimensions of a system. Two central problems are the meaningful composition

of heterogeneous components to ensure their correct interoperation, and the

meaningful refinement and integration of heterogeneous viewpoints during the

design process. Superficial classifications may distinguish between hardware and

software components, or between continuous-time (analog) and discrete-time

(digital) components, but heterogeneity has two more fundamental sources: the

composition of subsystems with different execution and interaction semantics;

and the abstract view of a system from different perspectives.

Heterogeneity of execution and interaction semantics. At one extreme of

the semantic spectrum are fully synchronized components, which proceed in lockstep

with a global clock and interact in atomic transactions. Such a tight coupling

of components is the standard model for most synthesizable hardware and for

hard real-time software. At the other extreme are completely asynchronous components,

which proceed at independent speeds and interact nonatomically. Such

a loose coupling of components is the standard model for most multithreaded

software. Between the two extremes, a variety of intermediate and hybrid models

exist (e.g., globally-asynchronous locally-synchronous models). To better understand

their commonalities and differences, it is useful to decouple execution from

interaction semantics [21].

Execution semantics. Synchronous execution is typically used in hardware, in

synchronous programming languages, and in time-triggered systems. It considers

a system’s execution as a sequence of global steps. It assumes synchrony,

meaning that the environment does not change during a step, or equivalently,

that the system is infinitely faster than its environment. In each execution step,

all system components contribute by executing some quantum of computation.

The synchronous execution paradigm, therefore, has a built-in strong assumption

of fairness: in each step all components can move forward. Asynchronous

execution, by contrast, does not use any notion of global computation step. It

is adopted in most distributed systems description languages such as SDL [16]

and UML, and in multithreaded programming languages such as Ada and Java.

The lack of built-in mechanisms for sharing computation between components

can be compensated through constraints on scheduling (e.g., priorities; fairness)

and through mechanisms for interaction (e.g., shared variables).

Interaction semantics. Interactions are combinations of actions performed by

system components in order to achieve a desired global behavior. Interactions

can be atomic or nonatomic. For atomic interactions, the state change induced in

the participating components cannot be altered through interference with other

interactions. As a rule, synchronous programming languages and hardware description

languages use atomic interactions. By contrast, languages with buffered

communication (e.g., SDL) and multithreaded languages (e.g., Java) generally

use nonatomic interactions. Both types of interactions may involve strong or

weak synchronization. Strongly synchronizing interactions can occur only if all

participating components agree (e.g., CSP rendezvous). Weakly synchronizing

interactions are asymmetric; they require only the participation of an initiating

action, which may or may not synchronize with other actions (e.g., outputs in

synchronous languages).

Heterogeneity of abstractions. System design involves the use of models

that represent a system at varying degrees of detail and are related to each

other in an abstraction (or equivalently, refinement) hierarchy. Heterogeneous

abstractions, which relate different styles of models, are often the most powerful

ones: a notable example is the boolean-valued gate-level abstraction of realvalued

transistor-level models for circuits.

In embedded systems, a key abstraction is the one relating application software

to its implementation on a given platform. Application software is largely

untimed, in the sense that it abstracts away from physical time. References to

physical time may occur in the parameters of real-time statements, such as timeouts,

which are treated as external events. The application code running on a

given platform, however, is a dynamical system that can be modeled as a timed

or hybrid automaton [1]. The run-time state includes not only the variables of

the application software, but also all variables that are needed to characterize

its dynamic behavior, including clock variables. Modeling implementations may

require additional quantitative constraints, such as probabilities to describe failures,

and arrival laws for external events. We need to find tractable theories

to relate the application and implementation layers. In particular, such theories

must provide the means for preserving, in the implementation, all essential

properties of the application software.

Another cause of heterogeneity in abstractions is the use of different abstractions

for modeling different extra-functional dimensions (or ‘aspects’) of a system.

Some dimensions, such as timing and power consumption in certain settings,

may be tightly correlated; others, such as timing and fault tolerance, may be

achievable through independent, composable solutions. In general we lack practical

theories for effectively separating orthogonal dimensions, and for quantifying

the trade-offs between interfering dimensions.

Metamodeling. We are not the first to emphasize the need for encompassing

heterogeneity in systems design. Much recent attention has focused on so-called

‘metamodels,’ which are semantic frameworks for expressing different models

and their interoperation [2, 9, 3]. We submit that we need a metamodel which is

not just a disjoint union of submodels within a common (meta)language, but one

which preserves properties during model composition and supports meaningful

analyses and transformations across heterogeneous model boundaries. This leads

to the issue of constructivity in design.

4.2 Achieving Constructivity

The system construction problem can be formulated as follows: “build a system

meeting a given set of requirements from a given set of components.” This is a

key problem in any engineering discipline; it lies at the basis of various systems

design activities, including modeling, architecting, programming, synthesis, upgrading,

and reuse. The general problem is by its nature intractable. Given a

formal framework for describing and composing components, the system to be

constructed can be characterized as a fixpoint of a monotonic function which

is computable only when a reduction to finite-state models is possible. Even in

this case, however, the complexity of the algorithms is prohibitive for real-world

systems.

What are the possible avenues for circumventing this obstacle?We need results in

two complementary directions. First, we need construction methods for specific,

restricted application contexts characterized by particular types of requirements

and constraints, and by particular types of components and composition mechanisms.

Clearly, hardware synthesis techniques, software compilation techniques,

algorithms (e.g., for scheduling, mutual exclusion, clock synchronization), architectures

(such as time-triggered; publish-subscribe), as well as protocols (e.g.,

for multimedia synchronization) contribute solutions for specific contexts. It is

important to stress that many of the practically interesting results require little

computation and guarantee correctness more or less by construction.

Second, we need theories that allow the incremental combination of the above

results in a systematic process for system construction. Such theories would

be particularly useful for the integration of heterogeneous models, because the

objectives for individual subsystems are most efficiently accomplished within

those models which most naturally capture each of these subsystems. A resulting

framework for incremental system construction is likely to employ two

kinds of rules. Compositionality rules infer global system properties from the

local properties of subsystems (e.g., inferring global deadlock-freedom from the

deadlock-freedom of the individual components). Noninterference rules guarantee

that during the system construction process, all essential properties of

subsystems are preserved (e.g., establishing noninterference for two scheduling

algorithms used to manage two system resources). This suggests the following

action lines for research.

Constructivity for performance and robustness. The focus must shift from

compositional methods and architectures for ensuring only functional properties,

to extra-functional requirements such as performance and robustness.

Performance. The key issue is the construction of components (schedulers) that

manage system resources so as to meet or optimize given performance requirements.

These cover a large range of resource-related constraints involving upper

and lower bounds, averages, jitter, and probabilities. Often the requirements for

different resources are antagonistic, for instance, timeliness and power efficiency,

or respecting deadlines and maximizing utilization. Thus we need construction

methods that allow the joint consideration of performance requirements and the

analysis of trade-offs.

Another inherent difficulty in the construction of schedulers comes from uncertainty

and unpredictability in a system’s execution and external environments.

In this context, poor precision for time constants used in static scheduling techniques

implies poor performance [23]. One approach is to build adaptive schedulers,

which control execution by dynamically adjusting their scheduling policies

according to their knowledge about the system’s environment. However, currently

there is no satisfactory theory for combining adaptive techniques for different

kinds of resources. Such an approach must address the concerns of critical

systems engineering, which currently relies almost exclusively on static techniques.

The development of a system construction framework that allows the

joint consideration of both critical and noncritical performance requirements for

different classes of resources is a major challenge for the envisioned Embedded

Systems Design Science.

Robustness. The key issue is the construction of components performing as desired

under circumstances that deviate from the normal, expected operating environment.

Such deviations may include extreme input values, platform failures,

and malicious attacks. Accordingly, robustness requirements include a broad

spectrum of properties, such as safety (resistance to failures), security (resistance

to attacks), and availability (accessibility of resources). Robustness is a

transversal issue in system construction, cutting across all design activities and

influencing all design decisions. For instance, system security must take into account

properties of the software and hardware architectures, information treatment

(encryption, access, and transmission), as well as programming disciplines.

The current state of the art in building robust systems is still embryonic. A

long-term and continuous research effort is necessary to develop a framework for

the rigorous construction of robust systems. Our purpose here is only to point

out the inadequacy of some existing approaches.

In dynamical systems, robustness can be formalized as continuity, namely, that

small perturbations of input values cause small perturbations of output values.

No such formalization is available for discrete systems, where the change of a

single input or state bit can lead to a completely different output behavior.

Worse, many of our models for embedded systems are nonrobust even in the

continuous domain. For example, in timed automata, an arbitrarily small change

in the arrival time of an input may change the entire behavior of the automaton.

In computer science, redundancy is often the only solution to build reliable

systems from unreliable components. We need theories, methods, and tools

that support the construction of robust embedded systems without resorting

to such massive, expensive overengineering. One hope is that continuity can be

achieved in fully quantitative models, where quantitative information expresses

not only probabilities, time, and other resource consumption levels, but also functional

characteristics. For example, if we are no longer interested in the absolute

(boolean-valued) possibility or nonpossibility of failure, but in the (real-valued)

mean-time to failure, we may be able to construct continuous models where small

changes in certain parameters induce only small changes in the failure rate.

Incremental construction. A practical methodology for embedded systems

design needs to scale, and overcome the limitations of current algorithmic verification

and synthesis techniques. One route for achieving scalability is to rely

on compositionality and noninterference rules which require only light-weight

analyses of the overall system architecture. Such correct-by-construction techniques

exist for very specific properties and architectures. For example, timetriggered

architectures ensure timely and fault-tolerant communication for distributed

real-time systems; a token-ring protocol guarantees mutual exclusion

for strongly synchronized processes that are connected in a ring. It is essential

to extend the correct-by-construction paradigm by studying more generally the

interplay between architectures and properties.

A related class of correct-by-construction techniques is focused on the use of

component interfaces [7]. A well-designed interface exposes exactly the information

about a component which is necessary to check for composability with other

components. In a sense, an interface formalism is a ‘type theory’ for component

composition. Recent trends have been towards rich interfaces, which expose functional

as well as extra-functional information about a component, for example,

resource consumption levels. Interface theories are especially promising for incremental

design under such quantitative constraints, because the composition

of two or more interfaces can be defined as to calculate the combined amount of

resources that are consumed by putting together the underlying components.

5 Summary

We believe that the challenge of designing embedded systems offers a unique

opportunity for reinvigorating Computer Science. The challenge, and thus the

opportunity, spans the spectrum from theoretical foundations to engineering

practice. To begin with, we need a mathematical basis for systems modeling and

analysis which integrates both abstract-machine models and transfer-function

models in order to deal with computation and physical constraints in a consistent,

operative manner. Based on such a theory, it should be possible to combine

practices for critical systems engineering to guarantee functional requirements,

with best-effort systems engineering to optimize performance and robustness.

The theory, the methodologies, and the tools need to encompass heterogeneous

execution and interaction mechanisms for the components of a system, and they

need to provide abstractions that isolate the subproblems in design that require

human creativity from those that can be automated. This effort is a true grand

challenge: it demands paradigmatic departures from the prevailing views on both

hardware and software design, and it offers substantial rewards in terms of cost

and quality of our future embedded infrastructure.

Acknowledgments. We thank Paul Caspi and Oded Maler for valuable comments

on a preliminary draft of this manuscript.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,

A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.

Theoretical Computer Science, 138(1):3–34, 1995.

2. F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A.L.

Sangiovanni-Vincentelli. Metropolis: An integrated electronic system design environment.

IEEE Computer, 36(4):45–52, 2003.

3. K. Balasubramanian, A.S. Gokhale, G. Karsai, J. Sztipanovits, and S. Neema.

Developing applications using model-driven design environments. IEEE Computer,

39(2):33–40, 2006.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,

284(5):34–43, 2001.

5. A. Burns and A. Wellings. Real-Time Systems and Programming Languages.

Addison-Wesley, third edition, 2001.

6. D.E. Culler and W. Hong. Wireless sensor networks. Commununications of the

ACM, 47(6):30–33, 2004.

7. L. de Alfaro and T.A. Henzinger. Interface-based design. In M. Broy, J. Gr¨unbauer,

D. Harel, and C.A.R. Hoare, editors, Engineering Theories of Software-intensive

Systems, NATO Science Series: Mathematics, Physics, and Chemistry 195, pages

83–104. Springer, 2005.

8. P.J. Denning and A. McGettrick. Recentering Computer Science. Commununications

of the ACM, 48(11):15–19, 2005.

9. J. Eker, J.W. Janneck, E.A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, and Y. Xiong. Taming heterogeneity: The Ptolemy approach. Proceedings

of the IEEE, 91(1):127–144, 2003.

10. P.H. Feiler, B. Lewis, and S. Vestal. The SAE Architecture Analysis and Design

Language (AADL) Standard: A basis for model-based architecture-driven embedded

systems engineering. In Proceedings of the RTAS Workshop on Model-driven

Embedded Systems, pages 1–10, 2003.

11. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic

Publishers, 1993.

12. D. Harel. A grand challenge for computing: Full reactive modeling of a multicellular

animal. Bulletin of the EATCS, 81:226–235, 2003.

13. T.A. Henzinger, C.M. Kirsch, M.A.A. Sanvido, and W. Pree. From control models

to real-time code using Giotto. IEEE Control Systems Magazine, 23(1):50–64,

2003.

14. T.A. Henzinger, E.A. Lee, A.L. Sangiovanni-Vincentelli, S.S. Sastry, and J. Sztipanovits.

Mission Statement: Center for Hybrid and Embedded Software Systems,

University of California, Berkeley, http://chess.eecs.berkeley.edu, 2002.

15. C.A.R. Hoare. The Verifying Compiler: A grand challenge for computing research.

Journal of the ACM, 50(1):63–69, 2003.

16. ITU-T. Recommendation Z-100 Annex F1(11/00): Specification and Description

Language (SDL) Formal Definition, International Telecommunication Union,

Geneva, 2000.

17. H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applications.

Kluwer Academic Publishers, 1997.

18. E.A. Lee. Absolutely positively on time: What would it take? IEEE Computer,

38(7):85–87, 2005.

19. P.R. Panda. SystemC: A modeling platform supporting multiple design abstractions.

In Proceedings of the International Symposium on Systems Synthesis (ISSS),

pages 75–80. ACM, 2001.

20. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Reference

Manual. Addison-Wesley, second edition, 2004.

21. J. Sifakis. A framework for component-based construction. In Proceedings of

the Third International Conference on Software Engineering and Formal Methods

(SEFM), pages 293–300. IEEE Computer Society, 2005.

22. J.A. Stankovic, I. Lee, A. Mok, and R. Rajkumar. Opportunities and obligations

for physical computing systems. IEEE Computer, 38(11):23–31, 2005.

23. L. Thiele and R. Wilhelm. Design for timing predictability. Real-Time Systems,

28(2-3):157–177, 2003.

Abstraction levels of embedded systems

Peter Braun and Martin Rappl

Lehrstuhl für Software & Systems Engineering – Prof. Broy

Technische Universität München, Arcisstraße 21, D-80333 München, Germany

Tel.: +49 (0)89 - 289 - 25317; Fax.: +49 (0)89 - 289 – 25310

{braunpe|rappl}@in.tum.de

This paper describes abstraction levels as they are used in the project

Automotive1 for a component- and function-oriented development process of

embedded systems. These abstraction levels build upon each other especially to

fit the needs of software development activities of embedded systems in the

context of automotive specific system development.

Objectives

In late 1999 the Technical University of Munich and the BMW company launched the

project Automotive with the aim to define a seamless, model based development

process and to realize a tool chain to support this process. The elaborated concepts

consider automotive specific requirements such as logically specified functions which

are deployed on control unit networks. Some of these deployed functions have to

fulfil hard real time constraints in safety critical applications which is another

challenge. Furthermore the methodology has to support the close interlocking and the

mutual influences of analysis and design activities during the specification of the

logical functions, the underlying network of control units and the implementation

techniques.

It is commonly accepted that the key potential for an improved development process

lies in the early phases of development. Concepts for a managed transition from

informal, mostly unstructured requirements specifications to model based analysis

and design techniques are vital for development. Thereby work on different aspects of

the requirements engineering process, work on a universal system model for

embedded systems, and work on the representation of the system model by notations

(UML and Ascet) are the focus of Automotive. The automotive modelling language

(AML) will represent the results of this work.

The elaborated methodology for automotive specific requirements engineering

facilitates the precise and complete documentation of requirements without

1 Automotive – Requirements Engineering for embedded systems is sponsored by the

„Bayerischen Forschnungsverbung für Software Engineering II”. The project Automotive is

a joint venture of the Technischen Universität München and many other companies (BMW,

Bosch, ETAS, Opel, Telelogic, QSS (Telelogic), ZF Friedrichshafen).

contradictions on different level of abstractions. Documented requirements serve as a

basis for all activities in the development process. Furthermore they are crucial for

mastering change management, configuration management, and quality assurance.

In Automotive the vendors ETAS, Telelogic and QSS (Telelogic) realize a tightly

integrated tool chain on the basis of their leading tools ASCET-SD, The UML Suite

and DOORS for a widespread support of the methodical concepts. The tool chain is

evaluated by associated industry partners (Robert Bosch, Adam Opel, ZF

Friedrichshafen). Long-term aim of Automotive is to define a de facto standard for

the methodical, model based design of embedded systems in the early development

phase. The accompanying realization of the tightly integrated tool chain, the

validation of the methodology and the particular constellation of the project partners

including associated project partners provide best conditions for the integration of the

methodology and the tools in the development process of companies, which are

working on applications for embedded control unit networks.

Model-based system development

During the development of embedded automotive systems graphical notations are

used to model specific parts of the system. Building an integrated model is the main

focus of a seamless, domain-specific system development. A system model contains

all information about the logic of functions, the distributed control unit network, the

actors, the sensors, and the environment. Those information are stored in different

levels of detail. For a seamless development it is necessary to integrate those

information strictly. In Automotive a metamodel-based approach is used.

In the next sections different abstraction levels are introduced. The defined

abstraction levels facilitate multiple views upon the system on different technical

levels.

Abstraction levels of embedded systems

Abstraction levels define restrictive views upon the system model. A view within an

abstraction level shows the system on a uniform technical level. In Automotive there

are six different abstraction levels.

1. Scenarios

2. Functions

3. Functional-network

4. Logical system architecture

5. Technical system architecture

6. Implementation

The different levels of abstraction build upon themselves. Model information and

logical dependencies defined in higher abstraction levels are included in lower ones.

The information is successively refined with technical information of new

information classes in lower abstraction levels. Those information-classes introduce

new information and the information of those classes is related to information of

higher abstraction levels. Furthermore there are consistency-constraints which ensure

the integrity of the system-model.

The division of the system-model into abstraction levels takes into account that

there are semantic properties which are characteristic for the considered abstraction.

During system development the semantics has to take into account that the notations

of different abstraction levels use different kinds of concepts. So for example in

higher abstraction levels, systems are event driven where they depend on a common

system-clock in more technical levels. The same is true for the change between

asynchronous to synchronous communication models or for different kinds of

communication e.g. multicasting and channel-based communication and the different

understanding of time.

Scenarios

The highest abstraction level describes systems with fewest amount of information in

a big universality. Information described at this level are events and their causal

dependencies. The information-class based upon the concept of events and their

causal dependencies provides enough modelling power to describe scenarios.

Scenarios are ordered sequences of events necessary to achieve a determined aim in a

certain context. Scenarios describe exemplary use cases, “not use cases” showing

how a system may not be used, possible exceptions, or test cases.

Functions

The set of functions define building blocks of the developed system. In contrast to

scenarios functions describe complete sequences. The view upon the function at this

high abstraction level is independent of later used implementation techniques.

Particularly functions are considered which are later assigned to actors, sensors, or the

environment.

The set of functions is structured to allow navigation between the usually great

number of different functions of a system. Several different hierarchical structures can

be defined. Each hierarchical structure views at least a clipping of the functions of the

whole system. Different hierarchies of the functions result from different levels of

experience or different views upon a system of the developers. The composition of

different functions to executable specification is not considered at this abstraction

level. The focus is the identification of functions, and the structuring of behaviourspecifications,

e.g. exemplary use-cases, informal descriptions or automata.

Dependencies between functions are not considered at this abstraction level. For

the consideration of dependencies between the functions the knowledge about which

functions are instantiated in the combination with other functions is missing.

Examples for dependencies between functions is the knowledge about sequential

execution or mutual exclusion of some functions.

Functional-network

The next abstraction level considers the instantiation of the defined functions to

particular functional configurations. This leads to an enlargement of the namespace.

The instances of functions are connected at this abstraction level. Mutual

dependencies between different functions have to be defined and possible conflicts

must be resolved. The definition of the mutual dependencies is a real refinement step

in the sense of a design step which leads one step closer to an implementable systemmodel.

At the level of functional-networks a first simulation of the overall system is

possible. Also the logical architecture of the system is now defined. The

communication between functions is event-driven and synchronous. There is only a

global time. The communication between the functions is based upon multicasting.

Logical system architecture

By developing the logical system-architecture the model is enlarged by information of

orthogonal information-classes. Concurrently gained information from the functionalnetwork

is refined. The new, orthogonal information-classes deal with the logical

distribution (information about logical control units) and the information about actors

and sensors in the environment. The communication is based on data-flow. It is

important that time is split into a real time part (universal time) of the environment

and into a system time part which has its own clocking. The adjustment of those

different times is crucial for a proper work of the system. The adjustment is not done

continuously. Instead it takes place at certain peaks. The peaks depend on the

tolerance which is valid in weak real-time systems. Hard real-time systems do not

permit tolerances at all. The communication between different components is

synchronous. The step towards a clocked data-flow is essential. That is to say the

event control of the higher abstraction levels is not longer used.

Technical system architecture

The technical system architecture offers further information-classes describing

concrete technical information. So the model is enriched with information e.g. about

concrete bus-realisations. Further information describe control unit specifications and

operating system descriptions. So it is possible to gain first performance estimates.

Implementation

At this level the implementation of the model described in the abstraction levels

above is done. This goes beyond the first prototypes which could be generated from

the models gained above. For example often code has to be optimised for

performance and size reasons. Beside this often adoptions to existing systems have to

be made.

Abstraction levels in the context of Automotive

The focus of the project Automotive is set to the abstraction levels scenarios,

functions, functional-networks, and logical system-architecture. Some aspects of the

next deeper abstraction level, the technical system-architecture, are considered as

well. The most technical level implementation is not in the focus of Automotive. The

notations describing information of those abstraction levels are notations of the UML

and the ASCET-SD (see Fig. 1 and 2).

1

1

1

1

Use Case Diag.

1

1

Deployment Diag.

Sequence Chart

Class Diag.

State Chart

Tabelle (DOORS)

Fig. 1: Abstraction levels

Fig. 2: Used Notations

Scenarios

Functions

Functional-Network

Logical Architecture

Technical Architecture

Implementation

UML Suite

ASCET SD

DOORS

Process model

The Automotive development process is tightly coupled with the notation of

abstraction levels. A very simple waterfall process model will just use one arbitrary

ordered sequence of abstraction levels. But this sequential processing sequence is not

very realistic in the context of system development in the large. On the one hand often

technical requirements of deeper abstraction levels are already given at the beginning

of the process. On the other hand especially in the automotive context already existing

systems (or even small parts of existing systems) have to be improved. Beside this,

teamwork has to be considered. This leads to a process model similar to concurrent

engineering. So, even at the beginning of the process, information corresponding to

deeper abstraction levels can and should be used. The integrated metamodel will then

ensure propagation (automatically or semi-automatically) of the corresponding

information to the higher abstraction levels.

Conclusion

The usability and further refinement of the abstraction levels and the process model

presented in this paper is one aim of the research in the project Automotive. To get a

pragmatic prototype showing the results of these research, popular commercial tools

are integrated. The technical integration of the tools DOORS, UML Suite and

ASCET-SD relies on a metamodel oriented approach. The Automotive modelling

language (AML) is defined using a metamodel, which describes the abstract syntax of

the AML language. So the metamodel concentrates on the concepts used in the AML.

For the concrete notation of the AML, some notations provided by the UML, the

ASCET-SD and DOORS are used. While the notations of the UML are used for the

more abstract levels, ASCET-SD is a tool for the specification and code-generation of

embedded systems. The requirements management and tracing tool DOORS will be

used over the whole process.

References

[BRS00] P. Braun, M. Rappl and J. Schäuffele: Softwareentwicklungen für Steuergerätenetzwerke

– Eine Methodik für die frühe Phase, VDI-Berichte, Nr. 1547, 2000.

[BR00b] P. Braun and M. Rappl: Model based Systems Engineering - A Unified Approach

using UML, Systems Engineering - A Key to Competitive Advantage for All Industries

Proceedings of the 2nd European Systems Engineering Conference (EuSEC 2000), Herbert

Utz Verlag GmbH, München, 2000.

[GR00] B. Gebhard and M. Rappl: Requirements Management for Automotive Systems

Development, SAE2000, SAE Press 00PC-107, 2000.
