ABSTRACT

Real-time systems play a considerable role in our society, and they cover a spectrum from the very simple to the very complex. Examples of current real-time systems include the control of domestic appliances like washing machines and televisions, the control of automobile engines, telecommunication switching systems, military command and control systems, industrial process control, flight control systems, and space shuttle and aircraft avionics.

All of these involve gathering data from the environment, processing of gathered data, and providing timely response. A concept of time is the distinguishing issue between real-time and non-real-time systems. When a usual design goal for non-real-time systems is to maximize system's throughput, the goal for real-time system design is to guarantee, that all tasks are processed within a given time. The taxonomy of time introduces special aspects for real-time system research.

Real-time operating systems are an integral part of real-time systems. Future systems will be much larger, more widely distributed, and will be expected to perform  a  constantly  changing  set  of  duties  in  dynamic  environments. This also sets more requirements for future real-time operating systems.
This seminar has the humble aim to convey the main ideas on Real Time System and Real Time Operating System design and implementation.
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1. Introduction   

Timeliness is the single most important aspect of a real -time system. These systems  respond to a series of external inputs, which arrive in an unpredictable fashion. The  real-time systems process these inputs, take appropriate decis ions and also generate  output necessary to control the peripherals connected to them. As defined by Donald  Gillies "A real-time system is one in which the correctness of the computations not only  depends upon the logical correctness of the computation but  also upon the time in  which the result is produced. If the timing constraints are not met, system failure is said  to have occurred." 

It is essential that the timing constraints of the system are guaranteed to be met.  Guaranteeing timing behaviour requires that the system be predictable. 

The design of a real -time system must specify the timing requirements of the system  and ensure that the system performance is both correct and timely. There are three  types of time constraints: 

· Hard:  A late response is incor rect and implies a system failure. An example of such a system is of medical equipment monitoring vital functions of a human body,  where a late response would be considered as a failure. 

· Soft:  Timeliness requirements are defined by using an average respons e time. If a single computation is late, it is not usually significant, although repeated late  computation can result in system failures. An example of such a system includes  airlines reservation systems. 

· Firm:  This is a combination of both hard and soft t imeliness requirements. The computation has a shorter soft requirement and a longer hard requirement. For  example, a patient ventilator must mechanically ventilate the patient a certain  amount in a given time period. A few seconds' delay in the initiation  of breath is  allowed, but not more than that.  

One need to distinguish between on -line systems such as an airline reservation system,  which operates in real-time but with much less severe timeliness constraints than, say, a missile control system or a telephone switch. An interactive system with better response  time is not a real-time system. These types of systems are often referred to as soft real time systems. In a soft real -time  system  (such  as  the  airline  reservation  system)  late  data is still good dat a. However, for hard real -time systems, late data is bad data. In  this paper we concentrate on the hard and firm real-time systems only. 

Most real -time systems interface with and control hardware directly. The software for  such systems is mostly custom -developed. Real -time Applications can be either  embedded applications or non -embedded (desktop) applications. Real -time systems  often do not have standard peripherals associated with a desktop computer, namely the  keyboard, mouse or conventional display monitors. In most instances, real-time systems  have a customized version of these devices.
 The following table compares some of the key features of real -time software systems  with other conventional software systems. 

	Feature
	Sequential Programming
	Concurrent Programming 
	Real Time Programming

	Execution  


	Predetermined order 

 
	Multiple sequential programs executing in  parallel 
	Usually composed 

of  concurrent 
programs 

	Numeric  Results


	Independent of program  execution speed
	Generally dependent on  program execution speed 


	Dependent on program  execution speed



	Examples
	Accounting, payroll  
	UNIX operating system  
	Air flight controller


1.1  Real-time Programs: The Computational Model  

A simple real -time program can be defined as a program P that receives an event from  a sensor every  T units of time and in the worst case, an event requires C units of  computation time. 

Assume that the processing of each event must always be completed before the arrival  of the next event (i.e., when there is no buffering). Let the deadline for completing the  computation be D. If D < C, the deadline cannot be met. If T < D, the program must  still process each event in a time  O/ T, if no events are to be lost. Thus the deadline is  effectively bounded by T and we need to handle those cases where C O/ D O/T. 

2. Design issue of Real Time Systems
Real-time systems are defined as those systems in which the correctness of the system depends not only on the logical result of computation, but also on the time at which the results are produced [17]. A common misconception is to consider, that real-time computing is equivalent to fast computing. In traditional non-real-time computer systems, the performance goal is throughput: as many tasks should be processed as possible in given time period. Real-time systems have a different goal to meet: as many tasks as possible should be executed so, that they will complete and produce results before their time limit expires. In other words, the behavior of real-time system must be predictable [16] in all situations.

To achieve predictability, all components of the real-time system must be time bounded. A predictability of the system depends on many different aspects. 
· The computer hardware must not introduce unpredictable delays into program execution. For example, caching and swapping as well as DMA cycle stealing are often problematic when determining process execution timing [4]. 
· An operating system must have a predictable behavior in all situations. Often the common-purpose operating systems, like UNIX, are too large and complex, and they have too much unpredictability. Thus, a special microkernel operating systems like the Chorus microkernel [9] have been designed for real-time purposes.
Also traditional programming concepts and languages are often not good for real-time programming. No language construct should take arbitrary long to execute, and all synchronization, communication, or device accessing should be expressible through time-bounded constructs [19]. However, despite all these real-time requirements could be solved, a human factor - the real-time programmer - can always cause unpredictability to the system. To assist the programming process, numerous methods have been produced for real-time system design, specification, verification, and debugging [5].

Typically, a real-time system consists of controlling system and a controlled system. The controlled system can be viewed as the environment with which the computer interacts. The typical real-time system gather information from the various sensors, process information and produce results. The environment for real-time system may be highly in deterministic. Events may have unpredictable starting time, duration and frequency. However, real-time system must react to all of these events within prespecific time and produce adequate reaction.

To guarantee, that a real-time system has always a correct view of its environment, a consistency must be maintained between them. The consistency is time-based. The controlling system must scan its environment fast enough to keep track changes in the system. The adequate fastness depends on application. For example, sensing a temperature needs often slower tempo than sensing a moving object.

The need to maintain consistency between the environment and the controlling system leads to the notion of temporal consistency. Temporal consistency has two components [12]:

1. Absolute consistency between the state of the environment and the controlling system. The controlling system's view from the environment must be temporally consistent, it must not be too old.

2. Relative consistency among the data used to derive other data. Sometimes, the data items depend on each other. If a real-time system uses all dependent values, they must be temporally consistent to each other.
There are several possibilities to maintain temporal consistency. The state of the environment is often scanned in periodical basis and an image of the environment is maintained in the controlling system. A timestamp methodology is often used to figure out validity of the system's image of the environment.

A typical real-time system consists of several tasks, which must be executed in simultaneous manner. Each task has a value which is gained to the system if a computations finishes in specific time. Each task has a deadline, which indicates a time limit, when a result of the computing 
becomes useless, ie. gains zero or negative value to the system. Furthermore, a task may have some value after the deadline has been expired.

The deadlines have been divided into three types: hard, soft and firm deadlines. The hard deadline means, that a task may cause very high negative value to the system, if the computation is not completed before deadline. Opposite to this, in a soft deadline, a computation has the decreasing value after the deadline, and the value may become zero at later time. In the middle of these extremes, a firm deadline is defined: a task loses its value after deadline, but no negative consequence will occur. Figure 1 plots the value versus time behavior for different deadline types. A real-time system must guarantee, that all hard deadlines and as many as possible of other deadlines are met.

Examples of deadline types are quite intuitive. A typical example of hard deadline can be found from the system controlling the nuclear power plant: adding coolant to the reactor must be done before temperature gets too high. A typical example for firm deadline can be found from the industry automation. A real-time system attempts to recognize a moving object. An object can be scanned only, when it is in the sight of the scanning device. If the object is not recognized, it can be rejected or rescanned later. Thus, an operation loses its value after a certain time period, but no harm will occur due to failure. A typical example of soft deadline is a combined operation sequence. The whole sequence has a firm deadline, but if some of the components of the sequence miss their deadlines, the overall sequence might still be able to make its deadline.

As a summary, the timing requirements for real-time systems can be expressed as following constraints to the processing [5]:

1. Response time, deadline: the system must respond to the environment within a specified time after input (or stimuli) is recognized.

2. Validity of data: in some cases, the validity of the input or output is a function of time. That is, some stimulus and the corresponding response become obsolete with time, and the time interval for which data is valid must be accounted in processing requirements.

3. Periodic execution: in many control systems, sensors collect data at predetermined time intervals.

4. Coordinating inputs and outputs: in some applications, input data from various sensors must be synchronized. Otherwise, decisions would be made based on inconsistent information.

An example of real-time system is simplified unmanned vehicle system (SUVS) [20]. The SUVS controls a vehicle with no assistance from a human driver. It periodically receives data from sensors such as the speedometer, temperature sensor, and direction sensor. It controls the vehicle by generating appropriate signals to actuators, such as the accelerator, brake and steering wheel.

Decisions are made based on the current inputs from the sensors and the current status of the road and the vehicle. Decisions must be made within a specified time. The events can occur very unexpectedly. Let's think about a scenario, where an obstacle suddenly falls into the road. The braking and steering decisions must be done within a short time period to avoid crashing. These decisions must also be synchronized and the status of the road and other traffic must be taken into account. Thus, most of tasks in SUVS have a hard deadline. This is typical in many safety critical systems [6, 7]. A real-time behavior is often essential when designing a safety critical system.
3. Scheduling

To support timeliness in a real-time system, a special real-time task scheduling methods have been introduced. Traditional real-time research has been concerned to uni processor scheduling. As a complexity and scale of real-time system grows, the processing power of real-time system is increased by adding new processors or by distribution. These issues introduce several new concepts to scheduling research, numerous schemes have been introduced for multiprocessor and distributed scheduling. In this section, we discuss two main principles for real-time scheduling, a scheduling paradigm and a priority inversion problem.

3.1 Scheduling paradigms 

The simplest real-time scheduling method is not to schedule at all. This method sounds dummy, but in many real-time systems, only one task exists. A common example is a typical programmable logic. Programmable logics are widely used in the industry automation. A programmable logic's program is executed periodically. During every execution, the program reads all inputs, makes simple calculations and sets appropriate outputs. Same program is executed at every time, and a state of the system depends on internal variables set in the previous runs. However, interrupts can be used to catch asynchronous events, but an advanced processing must be made within standard run periods.

In more advanced real-time systems, several simultaneous tasks can be executed. Every task may have different timing constraints and they may have a periodic or an aperiodic execution behavior. The periodic behavior mens, that a task must be executed within prespecific time intervals. When a task has an aperiodic behavior, it will execute, when an external stimulus occurs. In a typical real-time systems, both type of tasks exists. However, all aperiodic tasks can always be transformed to periodic. A task structure of the system describes, when the tasks can be started. Many systems have a static task structure, where tasks are installed during system startup and no new tasks can be started afterwards. In dynamic task structure, tasks can be started and ended during system uptime.

Depending on particular system's behavior, the different scheduling paradigms have been introduced [13]:

1. Static table-driven approaches: These perform static schedulability analysis and the resulting schedule (table) is used at run time to decide, when a task must begin execution. This is a highly predictable approach, but it is very inflexible, because a table must always be reconstructed, when a new task is added to the system. Due to predictability, this is often used when absolute hard deadlines are needed.

2. Static priority-driven pre-emptive approaches: These perform static schedulability analysis, but unlike in the previous approach, no explicit schedule is constructed. At run time, tasks are executed "highest priority first". This is a quite commonly used approach in concrete real-time systems.

3. Dynamic planning-based approaches: Unlike the previous two approaches, feasibility is checked at run time. A dynamically arriving task is accepted for execution only if it is found feasible.

4. Dynamic best effort approaches: Here no feasibility checking is done. The system tries to do its best to meet deadlines, but a task may be aborted during its execution.

Unfortunately the most scheduling problems are NP-complete. However, many good heuristic approaches have been presented. Thus, numerous algorithms have been introduced to support these scheduling paradigms. Algorithms are either based on the single scheduling paradigm or they can spread over several paradigms. These algorithms include least common multiply (LCM) method, earliest deadline first (EDF) method, rate monotonic (RM), and many others. A survey of scheduling methods is found in [13].

3.2 Priority inversion problem 

In a multitasking environment, the shared resources are often used. The usage of these resources must be protected with a well-known methods, like semaphores and mutexes. However, a priority inversion problem [14] arises, if these methods are used in real-time system with a pre-emptive priority-driven scheduling. In priority-driven scheduling, the eligible task with a highest priority is always executed. The task is eligible, when it is not waiting for any event, so when it is runnable. When the higher priority task becomes eligible, it is always started to run. The task with a lower priority is pre-empted, the task is released from a processor in favor to higher priority task.

A priority inversion problem arises, when a lower priority task has reserved a shared resource. If a higher priority task needs the same resource, the resource cannot be acquired, because it is already reserved by another task. This forces the higher priority task to block, which may lead to the missing of its deadline. Also the deadlock situation is possible. Figure 2 illustrates an execution sequence, where a priority inversion occurs. A task T3 executes and reserves a resource. A higher priority task T1 pre-empts task T3, but wants to allocate a resource reserver by task T3. Then, task T2 becomes eligible and blocks task T3. Because the task T3 cannot be executed, the resource remains reserved suppressing task T1 to run. Thus, the task T1 misses its deadline due to resource conflict.

Several approaches have been introduced to rectify the priority inversion problem. The use of priority inversion protocols is one approach. The basic idea of priority inversion protocols is that when a task blocks one or more higher priority tasks, it ignores its original priority assignment and executes its critical section at the highest priority level of all the tasks it blocks. After exiting its critical section, the task returns its original priority. Figure 3 illustrates, how a priority inversion problem presented in the figure 2 can be solved with a priority inheritance protocol. Again, the task T3 executes and reserves a resource, and a higher priority task T1 wants to allocate that resource. As a result of priority inheritance, the task T3 inherits priority of T1 and executes its critical section in that priority. Thus, the task T2 cannot pre-empt task T3 and the resource is released after a critical section is finished. Now the task T1 can acquire resource and it is completed to its deadline.
4. Real-time operating system 

Real-time operating systems are an integral part of real-time systems. Examples of these systems are process control systems, flight control systems and all other systems that require result of computation to be produced in certain time  schedule.  Nowadays  real-time  computing  systems  are  applied  to  more dynamic and  complex  missions,  and  their  timing  constraints  and  characteristics are becoming more difficult to manage. Early systems consisted of a small number  of  processors  performing  statically  determined  set  of  duties.  Future systems will be much larger, more widely distributed, and will be expected to perform  a  constantly  changing  set  of  duties  in  dynamic  environments.  This also sets more requirements for future real-time operating systems.

Real-time operating systems need to be significantly different from those  in traditional time-sharing system architectures because they have to be able to handle  the  added  complexity  of  time  constraints,  flexible  operations,  predictability and dependability.
5. Real-time operating system requirements and basic  abstractions

In real-time systems, operating system plays a considerable role. The most important task of it is to schedule system execution (processes) and make sure that all requirements  that the system is meeting are filled. In this chapter we will introduce some general terms used in operating systems and real-time systems:

5.1 General terms 

Real-time operating systems require certain tasks to be computed within strict time constraints. Time constraints define deadline, the response time in which the computation has to be completed. There are three different kinds of deadlines;  hard, soft and firm. Hard deadline means that if the computation is not completed before deadline, it may cause a total system failure. Soft deadline means  that  computing  has  a  decreasing  value  after  the  deadline  but  not  a zero  or  negative  number.  If  firm  deadline  is  missed,  the  value  of  task  is  lost but no negative consequence is occurred.

Fault  tolerance,  the  capability  of  a  computer,  subsystem  or  program  to  withstand the effects of internal faults, is also a common requirement for real-time operating systems.

Several  real-time  systems  collect  data  from  their  environment  at  predetermined time intervals which requires periodic execution.

5.2 Predictability 

One common denominator in real-time systems seems to be that all designers want  their  real-time  systems  to  be  predictable.  Predictability  means,  that  it should be possible to show, demonstrate, or prove that requirements are met subject  to  any  assumptions  made,  for  example,    concerning  failures  and workloads. In other words predictability is always subject to the underlying assumptions made.[2]

For  static  real-time  systems  in  deterministic,  stable  environments  we  can easily predict the overall  system  performance  over  large  time  frames  as  well as  predict  the  performance  of  some  individual  task.  In  more  complicated, changing,  nondeterministic environment  ,  for  example  a  future  system  of  robots co-operating on Mars, it is far more complicated task to predict in design phase, how the system is actually going to act in its real environment. In operating system level system must be designed to be so simple, that it is possible to predict worst-case situations in execution.
5.3 Temporal consistency 

The  controlling  system  must  scan  its  environment  fast  enough  to  maintain  a correct  view  of  it.  If  that  is  taken  care  of,  it  can  be  said  that  consistency  is achieved between real-time system and its environment. This leads to notion of temporal consistency [6], which has two components;

· Absolute  consistency,  which  is  achieved  between  the  controlling  system  and the state of the environment if the systems view of the environment is temporally consistent.

· Relative  consistency,  which  is  achieved  if  data  items  dependent  of  each other in the system are temporally consistent to each other.

Temporal consistency is usually maintained by periodically scanning the environment and maintain an image of the environment in the controlling system.

 6. Real-time operating system structure 

When systems have become larger and unwieldy, they are difficult to comprehend, develop and maintain.

A  recent  trend  in  operating  system  development  consists  of  structuring  the operating  system  as  a  modular  set  of  system  servers  which  sit  on  top  of  a minimal  kernel,  microkernel,  rather  than  using  the  traditional  monolithic  kernel,  in  which  all  functionality  of  the  system  is  provided.  Figure  3.1  presents monolithic kernel of the UNIX system [7].

3.1  Monolithic kernel of the UNIX system

The  idea  in  microkernel-based  operating  systems  are  that  those  functions which are needed universally, by every component of the system, form the microkernel.  Other  functionality  is  handled  outside  the  kernel  and  they  can  be specially  tailored  for  each  application.  Notations  close  and  open  system  are also  used  for  this  purpose. Real-time  operating  system  are  also  usually based on microkernel architecture and must support these main functional areas [1]:

· process management and synchronization 

· memory management 

· inter process communication 

· I/O

3.2   Structure of the CHORUS system

Microkernel based operating systems are like stripped down timesharing operating systems with only minimal functionality. In figure 3.2 microkernel of the CHORUS system is presented [7].

In real-time operating systems microkernels are used to achieve strict timing requirements.  The  structure  of  system  must  be  compact,  all  unnecessary functionality must be stripped down and execution time of a single  task  must be minimized. In real-time operating systems reaction time 
has to be short and the scheduling algorithm to be executed must be fast and very simple.

6.1 Basic abstractions

  Usually  current  real-time  operating  systems  support  following  basic  abstractions with slight differences between different systems:

Task : The basic unit of resource allocation. This includes /actor address space and access to the system resources.

Thread : The basic unit of execution. Usually executed in the address space of a single task.

Port  : A one-way communication channel implemented as a message queue.

Port set : A group of ports. Port set has usually only one queue.

Message : Collection of data objects used in  communicating between threads.

7. Real Time Operating System Types

They can be divided into 3 categories : 

· small proprietary kernels

· real-time extensions to commercial timesharing operating   systems

· research kernels.

7.1 Small Proprietary Kernels

The small, proprietary kernels are often used for small embedded systems when very fast and highly predictable execution must be guaranteed. The kernels are often stripped down and optimized to reduce the run-time overhead caused by the kernel. The usual characteristics of these kernels are [13]:

· fast context switching. 

· small size and stripped-down functionality.

· quick response to external interrupts.

· minimized intervals, when interrupts are disabled.

· fixed or variable sized partitions for memory management.

· ability to lock code and data into memory. 

· special sequential files for data accessing.

To deal with timing requirements, the kernel should provide a priority scheduling mechanism and a bounded execution time for most primitives. For timing purposes, the kernel should maintain a real-time clock 
and provide special alarm and timeout services, as well as primitives for delay by a fixed amount of time. In general, the kernel also performs multitasking and intertask communication and synchronization via standard well-known constructs such as mailboxes, events, signals, and semaphores. Additionally, the kernel should support real-time queuing methods such as delivering messages by a priority order. These kernels are suitable for small applications, such as instrumentation, communication front ends, intelligent peripherals, and process control. Since the application are simple, it is relatively easy to determine, that all timing constraints are met. As complexity of the system increases, it becomes more and more difficult to map all timing, computation time, resource, and value requirements to a single priority for each task. In these situations demonstrating predictability becomes very difficult. Because of these reasons, some researchers believe, that more sophisticated kernels are needed to address timing and fault tolerance constraints. Recently there are efforts to produce scalable kernels. The smallest level of support is a microkernel, and the support can be broaden by demands of the application. An example of this type of kernel is the Chorus microkernel [9], which can be scaled from a simple embedded microkernel to a full POSIX/UNIX support.

7.2 Real-time Extensions To Commercial Timesharing Operating  Systems

The second approach to the real-time operating system is the extension of commercial products, like extending UNIX to RT-UNIX, or POSIX to RT-POSIX. The real-time versions for commercial operating systems are generally slower and less predictable than proprietary kernels, but they have a greater functionality and a better software development environments.

However, there are various problems when attempting to convert a non-real-time operating systems to a real-time version [3]. For example, in UNIX interface, problems exist in process scheduling. These problems are due to nature of the nice and set priority primitives as well as round robin scheduling policy. Furthermore, timer facilities in unix are too coarse, memory management is too complex, and interprocess communication facilities do not support fast and predictable communication. Also implementation issues used in the UNIX operating system restrict its 
use for real-time purposes. These issues include intolerable overhead, non preemptability of the kernel, and internal FIFO queues. As a result, extending commercial timesharing operating system for real-time purposes is not a feasible approach, especially when hard deadlines are needed.

7.3 Research Kernels

The third category of real-time operating system is research kernels. These kernels are used in research purposes to develop and demonstrate new features to the real-time operating systems. Trends in the current research in real-time operating systems include developing real-time process models, developing real-time synchronization primitives, searching solutions for timing analysis, developing support for fault tolerance, investigating object-oriented approaches, providing support for multiprocessor as well as distribution, and attempting to formally define a microkernel. There are numerous research project addressing these issues. A survey of these projects is found in [13].
8. Designing a reflective architecture for a real-time operating system

There  are  several  issues  that  has  to  be  taken  into  account  when  designing and building a real-time operating system; meeting functional,  fault  tolerance and  timing  requirements  are  complex  tasks.  One  method  in  building  a  complex and flexible real-time system is to use the notion of reflective architecture [5].  A  system  based  on  reflective  architecture  is  one  that  reasons  about  and reflects  upon  its  own  current  state  and  that  of  the  environment  to  determine the right course of action. Several current real-time systems contain the same basic  paradigms  found  in  timesharing  operating  systems.  They  are  usually only stripped down and optimized versions of time-sharing operating systems. Although they stress fast mechanisms such as fast context switching and ability  to  respond  to  external  interrupts  quickly,  they  retain  some  main  abstractions  of  timesharing  systems,  which  should  be  taken  into  account  when  designing a complex and flexible real-time operating system, including:

· Viewing the execution of a task as a random process where task could be blocked at arbitrary points during its execution for an indefinite time. In critical real-time environments each task is well defined and can  be analyzed a priori

· Assuming  that  little  is  known  about  the  tasks  a  priori,  so  that  little  semantic  information  about  them  is  utilized  at  run  time.  In  real-time  systems, the software should be able to make use of important semantics information about the application tasks.

· Attempting to maximize throughput or minimize average response time.

These  metrics  are  not  primary  metrics  for  real-time  systems.  System could have a good average response time and still miss every deadline, resulting a useless system.

In traditional systems computation solves some application problem such as sorting a file or filtering important signals from radar returns. In reflective system  we  can  consider  a  system  to  have  a  
computational  part  and  reflective part. Computational part acts like in the traditional systems, but reflective part of  the  system  exposes  the  system  state  and  semantics  of  the  application  to decide what to do, for example in filtering process to choose the most appropriate filter.

5.1  Design issues There  exists  also  several  opposing  factors,  that  make  the  design  even  more complex. The desire for predictability versus the need for  flexibility  to  handle non-deterministic environments, failures and system architecture, the need for efficient performance and low cost versus understandability etc. Flexible real time system architecture cannot be  based  on  handcraft  solutions  because  of their  complexity  and  requirements.  When  building  a  real-time  system  based on  a  reflective  architecture  means  that  first  we  must  identify  reflective  information regarding the system. This information includes:

· Importance of task, group of tasks and how tasks'      importance relates to other and to system modes. 

· Time requirements (deadlines, periods etc.)
· Time profiles, such as the worst-case execution times 

·  Resource needs 

·  Precedence constraints  
·  Communication requirements 

·  Objectives or goals of the system 
·  Consistency and integrity constraints
·  Policies to guide system-wide scheduling 
·  Fault tolerance requirements 
·  Policies to guide tradeoff analyses
·  Performance monitoring information
Implementation structures in the operating system retain this information and primitives allow it to be dynamically changed. When implementing a real-time operating  system  based  on  reflective  architecture,  we  need  to  use  real-time programming  languages.  First  we  need  a  high-level  programming  language that is capable of specifying reflective information such as timing requirements and the need for guarantees with respect to these requirements. An example of  this  is  Spring-C,  which  is  used  in  Spring  -system  implementation  [3].  In general,  this  language  is  C  -based  programming  language  with  support  for timing specifications and guarantee  semantics.  Then  we  need  a  language  to support  system  description.  That  should  provide  means  to  perform  careful, detailed and accurate timing analysis. Third, we require notation for specifying fault-tolerance  requirements  on  a  task-by-task  basis,  where  it  is  possible  to perform adaptive management of redundancy.

When tasks' priorities are fixed, a fixed-priority scheduling mechanism, provided  by  most  real-time  kernels,  works  properly.  Still  many  more  complex systems require dynamic priorities. Dynamic priorities can be dynamically calculated  for  example  with  some  weighted  formula  that  combines  different  information e.g. deadline and resource needs. Systems with fixed priorities are not able to handle dynamic priorities properly.

In order to deal with predictability versus flexibility, there is a need for multilevel, multi-dimensional scheduling algorithms  [5].  These  algorithms  explicitly categorize  the  performance,  including  when  there  is  system  degradation  or unexpected  events.  Algorithms  are  multi-dimensional,  because  they  have  to consider  all  resources  needed  by  a  task,  not  just  CPU  time,  and  they  must consider  precedence  constraints  and  communication  requirements.  They  are multi-level algorithms, because tasks are categorized into four classes; critical (missing  the  deadline  causes  a  total  system  failure),  essential  (these  tasks have hard deadlines, but the tasks are not critical),  soft  real-time  (task  value drop after deadline but not to zero or negative number), and non-real-time (no deadlines). When task arrives, scheduling algorithm uses the reflective information about active tasks and creates a full schedule for them and predicts if some of them is going to miss their deadlines. If deadlines would be missed, error handling can occur before that happens.

Many  real-time  systems  require  strict  fault  tolerance  in  order  to  operate  in complex,  highly  variable  environment.  A  three-level  framework  for  defining fault  tolerance  requirements  is  presented.  At  the  highest  level  of  the  framework is the overall design process. That includes specification of the physical inputs and outputs from and to the external world, first specification of the important  functional  blocks  in  the  system,  the  flow  of  data  and  interactions among  them,  a  definition  of  timing  requirements  (periods,  deadlines  and  response  times),  identification  of  each  functions  criticality,  and  specification  of mode changes. At the second level of the framework  redundancy  of  the  system is  managed.    On  third  level  of  the  framework  is  the  actual  coding  of  the application  modules  themselves.  These  three  levels  must  be  consistent  with each other.
9. Conclusion

This paper gives an overview of the real-time system issues. The main concept in all real time systems is predictability. The predictability depends on numerous different aspects, hardware, operating system, programming languages, and program design and implementation methods. The real-time system must also have a temporally consistent view of the environment it belongs to. The consistency can be addressed as terms of absolute and relative consistency. The tasks in real-time systems may have arbitrary deadlines. The deadlines have been divided into three categories, depending on how the system is affected if a deadline is missed. These categories are hard, firm and soft deadlines.

To support timeliness and predictability, the different scheduling methods have been produced for uniprocessor systems as well as multiprocessor and distributed systems. Tasks in real-time systems can have periodic or aperiodic behavior, and several scheduling paradigms have been produced to support different system types. When resources need to be allocated in real-time systems, a priority inversion problem may arise. The priority inversion may cause the task to lose its deadline. Several priority inheritance protocols have been introduced to solve the priority inversion problem.
Real-time operating system is an integral part of real-time system. Real-time operating system offers tools to guarantee predictability. The small, proprietary kernels have been stripped out and optimized for real-time purposes. These kernels may be scalable from simple embedded systems to offering full POSIX/UNIX support. Also commercial timesharing operating systems can be extended to meet the real-time requirements, but these are not often applicable for real-time performance requirements. Also several research kernels were introduced. These kernels are used to develop and demonstrate new real-time system features.

Real-time database is an example case of real-time system. It combines database and realtime concepts. These concepts include handling a database schema, efficient data management support, transactionality, failure recovery mechanisms, data temporality, and real-time access to data.
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