Virtual memory
· Virtual memory is an illusion of a memory that is larger than the real memory
· Only some parts of a process are loaded in memory, other parts are stored in a disk area called swap space and loaded only when needed
· It is implemented using noncontiguous memory allocation
· The memory management unit (MMU) performs address translation.
· The virtual memory handler (VM handler) is that part of the kernel which manages virtual memory

Overview of virtual memory
[image:]
· Memory allocation information is stored in a page table or segment table;
 it is used by the memory management unit (MMU)
· Parts of the process address space are loaded in memory when needed
Logical address space, physical address space and address translation
[image:]
· Address space of a process is called the logical address space;
 an address in it is a logical address
· Memory of the computer constitutes the physical address space;
 an address in it is a physical address
• The MMU translates a logical address into a physical one

Paged virtual memory systems
· A process is split into pages of equal size
· The size of a page is a power of 2
· It simplifies the virtual memory hardware and makes it faster
· A logical address is viewed as a pair (page #, byte #)
· The MMU consults the page table to obtain the frame # where page page # resides
· It juxtaposes the frame # and byte # to obtain the physical address

Address translation in a paged virtual memory system
[image:]

· MMU uses the page # in a logical address to index the page table
· It uses the frame number found there to compute physical address

Fields in a page table entry
· Each page table entry has the following fields in it:
· Valid bit: Indicates whether page exists in memory
· 1 : page exists in memory, 0 : page does not exist in memory
· Page frame #: Indicates where the page is in memory
· Prot info: Information for protection of the page
· Ref info: Whether the page has been referenced after loading
· Modified: Whether the page has been modified
· such a page is also called a dirty page
· Other info: Miscellaneous info

Demand loading of pages
· Memory commitment would be high if the entire address space of a process is kept in memory, hence
· Only some pages of a process are present in memory
· Other pages are loaded in memory when needed; this action is called demand loading of pages
· The logical address space of a process is stored in the swap space
· The MMU raises an interrupt called page fault if the page to be accessed does not exist in memory
· The VM handler, which is the software component of the virtual memory, loads the required page from the swap space into an empty page frame
Demand loading of pages
[image:]
· Reference to page 3 causes a page fault because its valid bit is 0
· The VM handler loads page 3 in an empty page frame and updates
 its entry in the page table

Page-in, page-out and page replacement operations
· Three operations are needed to support demand loading of pages
· Page-in
· A page is loaded in memory when a reference to it causes a page fault
· Page-out
· A page is removed from memory to free a page frame
· If it is a dirty page, it is copied into the swap space
· Page replacement
· A page-out operation is performed to free a page frame
· A page-in operation is performed into the same page frame
Page-in and page-out operations constitute page traffic

Effective memory access time
· Effective memory access time of logical address
 (page #, byte #)@
 = pr1 x 2 x access time of memory
 + (1 – pr1) (access time of memory
 + Time required to load the page
 + 2 x access time of memory)
 where pr1 is the probability that the page page # is already in memory
@ : The page table itself exists in memory

Ensuring good system performance
· When a page fault arises in the currently operating process, the kernel switches the CPU to another process
· The page, whose reference had caused the page fault, is loaded in memory
· Operation of the process that gave rise to the page fault is resumed sometime after the required page has been loaded in memory

Performance of virtual memory
· Performance of virtual memory depends on the hit ratio in memory
· High values of the hit ratio are possible due to the principle of locality of reference
· It states that the next logical address referenced by a process is likely to be in proximity of the previous few logical addresses referenced by the process
· This is true for instructions most of the time (because branch probability is typically approx 10%)
· It is true for large data structures like arrays because loops refer to many elements of a data structure

Current locality of a process
· The current locality is the set of pages referenced in the previous few instructions
· Typically, the current locality changes gradually, rather than abruptly
· We define the proximity region of a logical address as the set of adjoining logical addresses
· Due to the locality principle, a high fraction of logical addresses referenced by a process lie in its current locality
Proximity regions of previous references and current locality of a process
[image:]
· The ← symbol designates a recently used logical address
· The current locality consists of recently referenced pages
· Proximity regions of many logical addresses are in memory

Memory allocation to a process
· How much memory, i.e., how many page frames should be allocated to a process?
· The hit ratio would be larger if more page frames are allocated
· The actual number of page frames allocated to a process is a tradeoff between
· A high value to ensure high hit ratio and
· A low value to ensure good utilization of memory

Desirable variation of page fault rate with
 memory allocation
[image:]
· The page fault rate should not increase as more page frames are
 allocated (however, it can remain unchanged)
· This property provides a method of eliminating high page fault rates
 by increasing the number of page frames allocated to a process

Thrashing
· Thrashing is the coincidence of high page traffic and low CPU efficiency
· It occurs when processes operate in the high page fault zone
· Each process has too little memory allocated to it
· It can be prevented by ensuring adequate memory for each process

Functions of the paging hardware
· The paging hardware performs three functions
· Address translation and generation of page faults
· MMU contains features to speed up address translation
· Memory protection
· A process should not be able to access pages of other processes
· Supporting page replacement
· Collects information about references and modifications of a page
· Sets the reference bit when a page is referenced
· Sets the ‘modify’ bit when a write operation is performed
· The VM handler uses this information to decide which page to replace when a page fault occurs

Address translation
· The MMU uses a translation look-aside buffer (TLB) to speed up address translation
· The TLB contains entries of the form (page #, frame #) for recently referenced pages
· The TLB access time is much smaller than the memory access time
· A hit in the TLB eliminates one memory access to lookup the page table entry of a page

Translation look-aside buffer
[image:]

· MMU first searches the TLB for page #
· The page table is looked up if the TLB search fails

Summary of actions in demand paging
[image:]
· A page may not have an entry in TLB but may exist in memory
· TLB and page table have to be updated when a page is loaded

Superpages
· TLB reach is stagnant even though memory sizes increase rapidly as technology advances
· TLB reach = page size x no of entries in TLB
· It indicates how much part of a process address space can be accessed through the TLB
· TLBs are expensive, so bigger TLBs are not affordable
· Stagnant TLB reach limits effectiveness of TLBs
· Superpages are used to increase the TLB reach
· A superpage is a power of 2 multiple of page size
· It is aligned on an address in logical and physical address space that is a multiple of its size
· A TLB entry can be used for a page or a superpage
· Max TLB reach = max superpage size x no of entries in TLB

· Size of a superpage is adapted to execution behaviour of a process
· The VM handler combines some frequently accessed consecutive pages into a superpage (called a promotion)
· Number of pages in a superpage is a power of two
· The first page has appropriate alignment
· It disbands a superpage if some of its pages are not accessed frequently (called a demotion)

Address translation in a multiprogrammed system
[image:]
· Page tables (PTs) of many processes exist in memory
· PT address register (PTAR) points to PT of current process
· PT size register contains size of each process, i.e., number of pages

Memory protection
· MMU implements memory protection as follows:
· Check whether a logical address (pi, bi) is valid, i.e., within process address space
· Raise a memory protection exception if pi exceeds contents of PT size register
· Ensure that the kind of access being made is valid
· Check the kind of access with the misc info field of the page table entry
· Raise a memory protection exception if the two conflict

I/O operations in virtual memory
· The data area involved in an I/O operation may occupy several pages
· If one of the pages does not exist in memory, a page fault would arise during the I/O operation
· The I/O operation may be disrupted by such page faults
· Hence all pages involved in the I/O operation are preloaded
· An I/O fix is put on the pages (in misc info field in PT entry)
· These pages are not removed from memory until the I/O operation completes
· Scatter / gather I/O: data for an I/O operation can be delivered to or gathered from non-contiguous page frames
· Otherwise the page frames have to be contiguous
[image:]
(a) If the I/O system provides a scatter / gather I/O operation
(b) If the I/O system does not provide scatter / gather I/O

Functions of the VM handler
· The VM handler performs the following functions:
· Manage the logical address space of a process
· Organize swap space and page table of the program
· Perform page-in and page-out operations
· Manage the physical memory
· Implement memory protection
· Maintain information for page replacement
· Paging hardware collects the information
· VM handler maintains it in a convenient manner and form
· Perform page replacement
· Allocate physical memory to processes
· Implement page sharing

Page fault handling and page replacement
· When a page fault occurs, the required page has to be loaded in memory
· The VM handler can use a free page frame, if one exists
· Otherwise, it performs a page replacement operation
· It removes one page from the memory, thus freeing a page frame
· It loads the required page in the page frame

Page replacement operation
(a) Page 1 exists in page frame 2; it is dirty (see m bit in PT entry)
(b) It is removed from memory through a page-out operation
 Page 4 is now loaded in page frame 2 and PT, FT entries are updated
[image:]

Practical page table organizations
· The page table of a process can be very large
· If logical addresses are 32 bits in length, and a page is 1K bytes
· The logical address space of a process
· Is 4 GB in size
· It contains 4 million pages
· If a page table entry is 4 bytes in length
· The page table occupies 16M bytes!
Q: How to reduce the memory requirements of page tables?
· Size of the page table should be reduced, but access to a page table entry should not become (much) slower
· Inverted page tables (IPT)
· Each entry contains information about a page frame rather than about a page
· Size of the IPT depends on size of the physical address space rather than on size of logical address space of a process
· Physical address spaces are smaller than logical ones!
· Multi-level page tables
· A page table is itself demand paged, so exists only partly in memory
· We have two kinds of pages in memory: pages of processes and pages of page tables (PT pages)

Inverted page table (IPT)
· The Inverted page table contains pairs of the form (process id, page id)
· While performing address translation for the logical address (pi, bi) of process P
· The MMU forms a pair (P, pi)
· Searches for the pair in the IPT
· Raises a page fault if the pair does not exist in memory
· Entry number in IPT where it is found is the page frame number
· A hash table is used to speed up the search in IPT and make address translation more efficient
· Now the frame number where a page is loaded has to be explicitly stored in IPT; It is used in address translation

Inverted page tables:
(a) concept, (b) implementation using a hash table
[image:]
(a) When page pi of P is loaded in memory, pair (P, pi) is hashed
 and also entered in IPT
(b) Pairs hashing into the same hash table entry are linked in IPT;
 MMU searches for a pair through the hash table and takes Frame #

Concept of two-level page table
· The page table is itself paged
· During address translation, MMU checks whether the relevant
 page of the PT is in memory. If not, it loads that PT page
· Required page of process is accessed through this PT page

[image:]

Address translation using two-level page table
· Address translation proceeds as follows:
· Page number pi in address (pi, bi) is split into two parts
 (PT page #, entry in PT page #)
· Where ‘PT page #’ is the number of the PT page that contains the page table entry for page pi
· The number of page table entries in a PT page is a power of 2, so bit splitting is used for this operation
· Address translation is performed as follows:
· MMU raises a page fault if ‘PT page #’ is not present in memory
· Otherwise, it accesses the entry ‘entry in PT page #’ in this page.
 This is the page table entry of pi
· MMU raises a page fault if this page is not present in memory

Two level page table organization
[image:]

· pi is split into two parts
· One is used to access entry of the PT page in higher order PT
· The other one is used to access PT entry of pi
· bi is used to access required byte in the page

Multi-level page tables
· These tables are generalizations of the two-level page tables
· Two and multi-level page tables have been used
· Intel 30386 used two-level page tables
· Sun Sparc uses three-level page tables
· Motorola 68000 uses four-level page tables

VM Handler modules in a paged system
[image:]
· Page-in and page-out are paging mechanisms
· The paging policy uses information in VM handler tables and
 invokes these mechanisms when needed

Page replacement policies
· Three primary policies
· Optimal policy
· Not realizable in practice
· We use it only to evaluate other algorithms
· FIFO policy
· Needs information about when a page was loaded in memory
· Least-recently-used (LRU) policy
· Needs information about when a page was last used
· Needs a ‘time stamp’ of the last use of a page
· The VM hardware and software has to collect additional information to facilitate page replacement decisions

Page reference string
· A page reference string is a sequence of page numbers containing the pages referenced by a process during an execution, e.g.
 1, 5, 3, 1, 2, 4, 1, 5, 3.
· If 3 page frames are allocated to a process, the page replacement algorithms will make the following decisions when page 2 is accessed
· FIFO page replacement algorithm would replace page 1
· LRU page replacement algorithm would replace page 5
· Optimal page replacement algorithm would replace … which page?
· ‘Preempt the farthest reference’ is one of the optimal strategies

Comparison of page replacement policies with
alloc = 2
· The misc info field contains a time-stamp
· For FIFO, it is the time of loading
· For LRU, it is the time of last reference

[image:]

Properties of page replacement policies
· The number of page faults should not increase if the memory allocation for a process is increased
· This requirement is satisfied if a page replacement policy possesses the inclusion property (also called the stack property)
· This property is important for ensuring good system performance
· If a process has a high page fault rate, increasing its memory allocation
· May or may not reduce its page fault rate
· Would not increase its page fault rate

Inclusion property (also called stack property)
· Notation:
· { pi }kn is the set of pages existing in memory at time tk+ if n page
 frames are allocated to a process all through its execution
· A page replacement algorithm possesses the inclusion property if
 { pi }kn is included in { pi }kn+1
· – This way, page faults would not increase if the process is
· allocated n+1 page frames instead of n frames (Q: Why?)
 – Consider the page reference string
 5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5 …
Performance of FIFO and LRU page replacement
[image:]
· The element 4* in the page reference string indicates that a
 page fault occurred when page 4 was referenced

Performance of FIFO and LRU page replacement
· In FIFO replacement, page faults may increase as more memory is
 allocated. This is called Belady’s anomaly
· LRU possesses the stack property, hence it does not suffer the anomaly

[image:]

Practical page replacement policies
· Comparison
· FIFO does not perform well in practice
· Because it does not possess the inclusion property
· LRU algorithm is impractical
· Because of the hardware cost of storing time of last reference; it requires a time-stamp in each entry of the page table
· Second chance algorithm is a hybrid algorithm
· Pages are entered in FIFO queue, which is scanned in circular manner when a page replacement is necessary
· The reference bit of the next page is checked
· If the bit is set, it is reset and the scan proceeds
· If the bit is not set, the page is replaced

Performance of FIFO and second-chance page replacement policies
[image:]
· 4* indicates that a page fault occurred when page 4 was referenced
· In the second chance algorithm, a ‘.’ next to a page implies that
 the reference bit of the page is ‘on’

Clock algorithm
· Analogous to the second chance algorithm
· The pointer that moves over all pages in a scan is like a clock hand
· Two handed clock algorithm	
· A resetting hand (RH) and an examining hand (EH). When a page is to be replaced, the hands are moved synchronously
· The reference bit of the page pointed to by RH is reset
· The page pointed to by EH is examined
· If its reference bit is ‘on’, the scan proceeds
· Otherwise, the page pointed to by EH is replaced
Determining the memory allocation for a process
· Notation:
· alloci is the number of page frames allocated to process Pi
· How much memory should be allocated to a process?
· Too little memory
· Page fault rate would be high
· Too much memory
· Degree of multiprogramming in the system would be low
· System performance is affected in both these situations

· Thrashing is a situation in which each process in the system is allocated too little memory
· (In some literature, a process is said to thrash if it is allocated too little memory)
· Thrashing is characterized by two properties
· Too much page I/O is performed, i.e., too many page-ins / outs
· CPU does not have enough work to perform
· Q: How to avoid thrashing?
· Allocate adequate amount of memory to a process
· Vary the memory allocation to suit requirements of the process
· The notion of working set aids in both of these

Working set
· The working set (WS) of a process is the set of pages referenced by it in the previous Δ machine instructions
· The VM handler determines the WS of a process periodically
· It determines WS size (WSS) and allocates those many page frames
· If it cannot allocate those many page frames, it swaps out that process completely. This avoids thrashing
· It is called the working set memory allocator
· Since process locality changes gradually, rather than abruptly, each process performs well most of the time

Operation of a working set memory allocator
· The system has 60 page frames
· At t100, 8 page frames are free but WSS4=10, so proc4 is swapped out
· At t300, proc4 is swapped-in because alloc4 = WSS4 is possible
· At t400, proc4 is swapped-out once again

Program sharing in virtual memory systems
· If two or more processes wish to use the code of the same program, is it possible to have only one copy of the program in memory?

Dynamic sharing of program C
by processes A and B
[image:]
· Program C occupies pages i and i +1 in the address space of
 process A but j and j +1 in address space of process B
· Hence the operand of the Add instruction should be different
· Hence a single copy of C cannot be shared by processes A and B
· Dynamic sharing of a single copy of program C by processes A and B	
· Two conditions have to be satisfied for such sharing
· Program C should be reentrant
· This way, it can be invoked simultaneously by A and B
· Program C should have identical addresses in the logical address spaces of processes A and B
· Page table entries of both A and B would point to the same copy of the pages of C
· Collection of page reference information becomes cumbersome
· Consequently, VM handler may handle shared pages separately

Copy-on-write
· Parent and child processes share their address spaces. Memory and swap space can be optimized by not replicating the pages
· The copy-on-write technique shares a single copy of a page until it is modified by one of the processes
· A page is made read only in both address spaces and a single copy of the page exists
· When a process modifies a page, it leads to a protection fault. A private copy of the page is now made for the process and added to its page table
· Thus multiple copies exist only for modified pages

Memory mapped files
· Memory mapping of a file by a process binds that file to a part of the logical address space of the process
· When the process refers to data in the file, the VM handler organizes access to the corresponding part of its own address space
· Loading and writing of data in the file are performed by the VM handler analogous to the loading and replacement of pages in the logical address space of a process

Memory mapping of files
· Benefits
· Less memory-to-memory copying
· When data is read from a file, it is first read into an I/O buffer, and then moved into the logical address space of a process
· Memory mapping avoids this memory-to-memory copying
· Fewer disk operations
· A file page existing in memory may be accessed several times, thus avoiding several disk accesses
· Prefetching of data
· Data may be loaded in memory before it is accessed (because some other data in the same file page was accessed)
· Efficient data access
· Irrespective of the file organization
Virtual memory implementation using segmentation
· The VM handler maintains a segment table (ST)
· The MMU uses its contents for address translation of a logical
 address (si , bi)
[image:]

Use of symbolic segment and byte ids
[image:]
· ids are associated with bytes within a segment
· The compiler makes this information available to the VM handler
· The VM handler puts this information in the segment link table (SLT)
· The MMU uses it for address translation
Address translation in segmentation with paging
[image:]
· A page table is maintained for each segment
· The MMU splits a logical address into three components—
 si, pi and bi

Virtual memory in Unix
· Text pages and the swap space
· A text (i.e., code) page is initially loaded from a code file
· The page is written in the swap file when swapped out; this way, only used text pages are added to the swap space
· When a process page faults for such a page, it may be in use by another process. In this case, a page-in operation is avoided
· A data page is called a zero-filled page. When it is removed from memory, it is written into the swap space
· Swap space is allocated in increments of a few disk blocks. A process has to be cancelled if its swap space cannot be increased when needed
· A copy-on-write feature is provided
· Paging
· The VM handler keeps 5% of page frames on the free list
· It activates the pageout daemon if the number falls below 5%. The pageout daemon adds some page frames to the list and goes to sleep
· It maintains two lists of pages—active and inactive lists
· It always keeps a certain fraction of pages in the inactive list
· When it is activated by VM handler
· It swaps out inactive processes and examines their page frames and page frames of other processes that contain inactive pages
· Adds clean pages to the free list and starts pageout operations on dirty pages

Virtual memory in Linux
· Paging (contd)
· Linux uses three level page tables on 64-bit architectures, and a buddy system allocator
· VM handler maintains a sufficient number of free page frames using a clock algorithm
· If a process page faults for a page contained in a page frame that is marked free, it is simply ‘connected’ to the process
· File backed memory region helps memory mapping of files, the private memory region provides copy-on-write

Virtual memory in Windows
· Salient features of Windows virtual memory
· The kernel is mapped into a part of each address space
· VM handler uses two level page tables
· It maintains state of each page frame
· A standby page is not a part of any working set, but it could be simply ‘connected’ to a process that page faults for it
· A section object represents shareable memory
· Each sharing process has a view of the object
· When a view is accessed for the first time, memory is allocated to that part of the object which is covered by the view
· A copy-on-write feature is provided
image6.png
Desirable
Page . operating
fault High zone Low
rate | Page fault page fault
zone zone
—
0

No. of page frames allocated to a process —

image7.png
N Uk W = O

Memory

Page Page

frame
N 7/
27 Translation
: i3 look-aside
S buffer (TLB)

Page table

of Py

Valid Page
bit frame
#

N

Misc
info

image8.png
Obtain (p;,w;)
from logi
address

pi’s entry
in TLB?

Raise
page fault

Enter (p;, f;)
in TLB

ATU actions

Page fault

page-out
needed?

Load

page p;

Y'

Remove page p;
from memory Update PT

entry of p;

!

Invoke scheduler

]
Update PT, TLB
entries of p;

VM handler actions

image9.png
Memory

Memory protection exception

Page table
of P

Page table
of Py

Page table
of P3

image10.png
Logical address space Memory
8 | read (i1.20).
i | read (i1.20),
1o [T
i
i1+l
14
Valid Page Misc
bit frame# info
i 1 14 | /O fix
i+l | 1 10 [/0 fix
i 1 8
PT

(a)

i
i1+l

Logical address space Memory
8 | read 14020,.
read (i1.,20)..
14
15
Valid Page Misc
bit frame # info
i 1 14 |10 fix
i+l | 1 15 |10 fix
i 1 8
PT
(b)

image11.png
N U ALY —O

Valid Page Misc

bit frame# info

Valid Page Misc
bit frame# info

0l0 0|l 0
101 2 m,ly 110
.21 7 [T o201 7 [T
Memory 3 4 7o Memory 30 4 7o
4[0 0 401 2 h2
1
PT PT
2
Page 3 Page
Status id 4 Status id
0[1 [(Ps.H 5 01 [(Pu.d
11 [(P.8) 118
2T [(P.D) 6 A)
31 [(P.D) 7 31 [(P.D)
41 [PL3) 41 [PL3)
S [P D) SLL[P.D
6[1 [(P3,3) 6 1 [(P3,3)
71 [(P1.2) 701 [(P1.2)
FT FT
(a) (b)

image12.png
Page Page Frame Ref
. fault s id # info Pointer
o Proce
Memory W o ke —_—
i Page
L Qi R B
i . el 7 %
®pl -
) |
Hash table IPT
®

image13.png
Pages of
page table
of P

Page table

Page 0

Page 1

Page 2

of P

Pages
of P

Byte with
address (p;, b;)

image14.png
Pages of
process P

Higher level
page table
of P

Page pi

Word with
address (pi,

image15.png
Paging Virtual memory

policy handler tables
i i .
1| Page-in Page-out | 1 Paging
! ! mechanisms
L T

v L1 — Data flow

= * Control fl
Paging hardware ontrot flow

image16.png
Optimal FIFO LRU
Time Page Valid Misc Replace- Valid Misc Replace- Valid Misc Replace

instant ref bit info ment bit info ment bit info ment
o1 o[1]n o[1]a

a0 1[0 - 1[0 - 1[0 -
20 20 20
o1 o[1]n o[1]n

no1 11 - 1[1n - 11D -
2[0 2[0 2[0
o1 o[o[1]n

50 11 - 1[1n - 1o -
2[0 2[0 2[0
01 o[0 o[1]n

noo2 1[0 Iby2 1[1]n| Oby2 1[0 Iby2
21 21 21 n
o1 01]fs o[1]f

50 1[0 - 1[0 Iby0 1[0 -
2[1 2117 21 @m
0[0 0[1]ss o[1]s

51 11 Obyl 1[1[fe| 2byl [1]f| 2byl
21 20 20
0[0 o0 o0

no2 11 - I[T[f| Oby2 1[1[%| Oby2
21 21 n 20 n

image17.png
o[v [P [N i —[q[A] i [F[]

e o T = o R = e

o] & [=] & <[] & [o[e[He

<[] o [l & B R P e e)

<[] <+ [N & <[] <+ [H]=

[wer] i [][] i e 0 e e 0 e e

=[] i [H]—] =[] fn [[=

= & [er[+]—] +[—[] &[]

I L[S 0 e) e =

et & []n] & [+ & []er[<

el <]n] & el & c[]] 2n o] <]
<] & <[] & <] & <t
[Ta] v [] v] [

o <+ ol <+

I I 1 I

< < < <

< < < <

El El El El

g 2

[a

2* 1" 4 3 5 4 3 2F 1* 5

3

5 4+

image18.png
14
12

page
faults

=N

S}

page
faults

14
12

=N

S}

LRU

alloc —

image19.png
FIFO

Second
chance

Page
reference

Circular
queue

Page
reference

3] [] 7@ @ Mo
1] [51 5] 3] [5] [5
5 2] 2 3] 31 3] [3] (4

1" 4 4 3 4 1 4

[o]=]
[=]+

& [wlul+]
0 [Pa[H
& [Plo]+

B
& =]

1

image20.png
Pages of | i
program C i+

Pages of . i
program C }+{

Process A

Memory

Add ((+4,12)

Process B

Add (j+4.12)

image21.png
Memory

Valid Misc
STAR bit _Addr _info

ai

T
|
|

o

Segment Table

(ST)

image22.png
Segment Valid Misc

alpha Name bit Addr info Name Offset

i i

i i

peta 1 beta | 232

| | alphal | [23480 gamma| 478

| gamma i

i i

| | Segment Table Segment Link Table
[(ST) (SLTa1pna)

(a) (b)

image23.png
Valid PT Misc
Name bit addr info

Memory

=== ———d>]

Add| s; | pi | Wi

image1.png
Process

Memory
allocation
information

Memory

Disk

0g
0o
og

image2.png
Memory

0
Process A
0
A-1
A2 | Add - (3,349)
A-2
A-3
A4 A3 T
16999

Logical address space

A-1

49999

Physical addres:

Al

A2
e
A4

47000
15000
38000

Memory
allocation
information

image3.png
N U R W —O

Memory

Add |

0

TN

Page table

of P,

Page
frame #

Page table

of P,

Page table

of P3

L1

6

Free frames
list

image4.png
Swap space

0o
i

of P,

\ Virtual
memory
handler

Memory
- ATU

0 Page table
1
2 1[5
3 (1) 7 * P
4
; VARNRN

qi b / Y

—o [I000O00o0ND) lid pege Mie — [

7 # Free frames

list

image5.png
A page
in current
locality

Logical

address

/ accessed

Proximity

region of

logical
address

