Virtual memory
· Virtual memory is an illusion of a memory that is larger than the real memory
· Only some parts of a process are loaded in memory, other parts are stored in a disk area called swap space and loaded only when needed
· It is implemented using noncontiguous memory allocation
· The memory management unit (MMU) performs address translation. 
· The virtual memory handler (VM handler) is that part of the kernel which manages virtual memory

Overview of virtual memory
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·   Memory allocation information is stored in a page table or segment table;
    it is used by the memory management unit (MMU)
·   Parts of the process address space are loaded in memory when needed
Logical address space, physical address space and address translation
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· Address space of a process is called the logical address space; 
  an address in it is a logical address
·  Memory of the computer constitutes the physical address space;
  an address in it is a physical address
• The MMU translates a logical address into a physical one

Paged virtual memory systems
· A process is split into pages of equal size
· The size of a page is a power of 2
· It simplifies the virtual memory hardware and makes it faster
· A logical address is viewed as a pair (page #, byte #)
· The MMU consults the page table to obtain the frame # where page page # resides
· It juxtaposes the frame # and byte # to obtain the physical address

Address translation in a paged virtual memory system
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·   MMU uses the page # in a logical address to index the page table
·   It uses the frame number found there to compute physical address

Fields in a page table entry
· Each page table entry has the following fields in it:
· Valid bit: Indicates whether page exists in memory
· 1 : page exists in memory, 0 : page does not exist in memory
· Page frame #:  Indicates where the page is in memory
· Prot info: Information for protection of the page
· Ref info: Whether the page has been referenced after loading
· Modified: Whether the page has been modified 
· such a page is also called a dirty page
· Other info: Miscellaneous info

Demand loading of pages
· Memory commitment would be high if the entire address space of a process is kept in memory, hence
· Only some pages of a process are present in memory
· Other pages are loaded in memory when needed; this action is called demand loading of pages
· The logical address space of a process is stored in the swap space 
· The MMU raises an interrupt called page fault if the page to be accessed does not exist in memory
· The VM handler, which is the software component of the virtual memory, loads the required page from the swap space into an empty page frame
Demand loading of pages
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·   Reference to page 3 causes a page fault because its valid bit is 0
·   The VM handler loads page 3 in an empty page frame and updates
   its entry in the page table

Page-in, page-out and page replacement operations
· Three operations are needed to support demand loading of pages
· Page-in
· A page is loaded in memory when a reference to it causes a page fault
· Page-out
· A page is removed from memory to free a page frame
· If it is a dirty page, it is copied into the swap space
· Page replacement
· A page-out operation is performed to free a page frame
· A page-in operation is performed into the same page frame
Page-in and page-out operations constitute page traffic

Effective memory access time
· Effective memory access time of logical address 
    (page #, byte #)@
              = pr1 x 2 x access time of memory
                   + (1 – pr1) (access time of memory
                                     + Time required to load the page
                                     + 2 x access time of memory)
    where pr1 is the probability that the page page # is already in memory
@ : The page table itself exists in memory

Ensuring good system performance
· When a page fault arises in the currently operating process, the kernel switches the CPU to another process
· The page, whose reference had caused the page fault, is loaded in memory
· Operation of the process that gave rise to the page fault is resumed sometime after the required page has been loaded in memory

Performance of virtual memory
· Performance of virtual memory depends on the hit ratio in memory
· High values of the hit ratio are possible due to the principle of locality of reference 
· It states that the next logical address referenced by a process is likely to be in proximity of the previous few logical addresses referenced by the process
· This is true for instructions most of the time (because branch probability is typically approx 10%)
· It is true for large data structures like arrays because loops refer to many elements of a data structure

Current locality of a process
· The current locality is the set of pages referenced in the previous few instructions
· Typically, the current locality changes gradually, rather than abruptly
· We define the proximity region of a logical address as the set of adjoining logical addresses
· Due to the locality principle, a high fraction of logical addresses referenced by a process lie in its current locality
Proximity regions of previous references and current locality of a process
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·   The ← symbol designates a recently used logical address
·   The current locality consists of recently referenced pages
·   Proximity regions of many logical addresses are in memory

Memory allocation to a process
· How much memory, i.e., how many page frames should be allocated to a process?
· The hit ratio would be larger if more page frames are allocated
· The actual number of page frames allocated to a process is a tradeoff between 
· A high value to ensure high hit ratio and 
· A low value to ensure good utilization of memory 

Desirable variation of page fault rate with
 memory allocation
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·   The page fault rate should not increase as more page frames are
    allocated (however, it can remain unchanged) 
·   This property provides a method of eliminating high page fault rates 
    by increasing the number of page frames allocated to a process


Thrashing
· Thrashing is the coincidence of high page traffic and low CPU efficiency
· It occurs when processes operate in the high page fault zone
· Each process has too little memory allocated to it
· It can be prevented by ensuring adequate memory for each process

Functions of the paging hardware
· The paging hardware performs three functions
· Address translation and generation of page faults
· MMU contains features to speed up address translation
· Memory protection
· A process should not be able to access pages of other processes
· Supporting page replacement
· Collects information about references and modifications of a page
· Sets the reference bit when a page is referenced
· Sets the ‘modify’ bit when a write operation is performed 
· The VM handler uses this information to decide which page to replace when a page fault occurs

Address translation
· The MMU uses a translation look-aside buffer (TLB) to speed up address translation
· The TLB contains entries of the form (page #, frame #) for recently referenced pages
· The TLB access time is much smaller than the memory access time
· A hit in the TLB eliminates one memory access to lookup the page table entry of a page 

Translation look-aside buffer
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· MMU first searches the TLB for page #
·   The page table is looked up if the TLB search fails

Summary of actions in demand paging
[image: ]
· A page may not have an entry in TLB but may exist in memory
·   TLB and page table have to be updated when a page is loaded

Superpages
· TLB reach is stagnant even though memory sizes increase rapidly as technology advances
· TLB reach = page size x no of entries in TLB
· It indicates how much part of a process address space can be accessed through the TLB
· TLBs are expensive, so bigger TLBs are not affordable
· Stagnant TLB reach limits effectiveness of TLBs
· Superpages are used to increase the TLB reach
· A superpage is a power of 2 multiple of page size
· It is aligned on an address in logical and physical address space that is a multiple of its size
· A TLB entry can be used for a page or a superpage 
· Max TLB reach = max superpage size x no of entries in TLB

· Size of a superpage is adapted to execution behaviour of a process
· The VM handler combines some frequently accessed consecutive pages into a superpage (called a promotion)
· Number of pages in a superpage is a power of two
· The first page has appropriate alignment
· It disbands a superpage if some of its pages are not accessed frequently (called a demotion)

Address translation in a multiprogrammed system
[image: ]
· Page tables (PTs) of many processes exist in memory 
·   PT address register (PTAR) points to PT of current process
·   PT size register contains size of each process, i.e., number of pages 

Memory protection
· MMU implements memory protection as follows:
· Check whether a logical address (pi, bi) is valid, i.e., within process address space
· Raise a memory protection exception if pi exceeds contents of PT size register 
· Ensure that the kind of access being made is valid
· Check the kind of access with the misc info field of the page table entry
· Raise a memory protection exception if the two conflict

I/O operations in virtual memory
· The data area involved in an I/O operation may occupy several pages
· If one of the pages does not exist in memory, a page fault would arise during the I/O operation
· The I/O operation may be disrupted by such page faults
· Hence all pages involved in the I/O operation are preloaded
· An I/O fix is put on the pages (in misc info field in PT entry)
· These pages are not removed from memory until the I/O operation completes
· Scatter / gather I/O: data for an I/O operation can be delivered to or gathered from non-contiguous page frames
· Otherwise the page frames have to be contiguous
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(a)  If the I/O system provides a scatter / gather I/O operation
(b)  If the I/O system does not provide scatter / gather I/O

Functions of the VM handler
· The VM handler performs the following functions:
· Manage the logical address space of a process
· Organize swap space and page table of the program
· Perform page-in and page-out operations
· Manage the physical memory
· Implement memory protection
· Maintain information for page replacement
· Paging hardware collects the information
· VM handler maintains it in a convenient manner and form
· Perform page replacement
· Allocate physical memory to processes
· Implement page sharing

Page fault handling and page replacement
· When a page fault occurs, the required page has to be loaded in memory
· The VM handler can use a free page frame, if one exists
· Otherwise, it performs a page replacement operation
· It removes one page from the memory, thus freeing a page frame
· It loads the required page in the page frame 

Page replacement operation
(a) Page 1 exists in page frame 2; it is dirty (see m  bit in PT entry)
(b) It is removed from memory through a page-out operation 
     Page 4 is now loaded in page frame 2 and PT, FT entries are updated
[image: ]

Practical page table organizations
· The page table of a process can be very large
· If logical addresses are 32 bits in length, and a page is 1K bytes
· The logical address space of a process
· Is  4 GB in size
· It contains 4 million pages
· If a page table entry is 4 bytes in length
· The page table occupies 16M bytes!
Q: How to reduce the memory requirements of page tables?
· Size of the page table should be reduced, but access to a page table entry should not become (much) slower
· Inverted page tables (IPT)
· Each entry contains information about a page frame rather than about  a page
· Size of the IPT depends on size of the physical address space rather than on size of logical address space of a process
· Physical address spaces are smaller than logical ones!
· Multi-level page tables
· A page table is itself demand paged, so exists only partly in memory
· We have two kinds of pages in memory: pages of processes and pages of page tables (PT pages)

Inverted page table (IPT)
· The Inverted page table contains pairs of the form (process id, page id)
· While performing address translation for the logical address     (pi, bi ) of process P 
· The MMU forms a pair (P, pi)
· Searches for the pair in the IPT
· Raises a page fault if the pair does not exist in memory
· Entry number in IPT where it is found is the page frame number
· A hash table is used to speed up the search in IPT and make address translation more efficient
· Now the frame number where a page is loaded has to be explicitly stored in IPT; It is used in address translation

Inverted page tables: 
(a) concept, (b) implementation using a hash table
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(a) When page pi  of P is loaded in memory, pair (P, pi ) is hashed 
     and also entered in IPT
(b) Pairs hashing into the same hash table entry are linked in IPT; 
     MMU searches for a pair through the hash table and takes Frame #

Concept of two-level page table
· The page table is itself paged
·   During address translation, MMU checks whether the relevant
   page of the PT is in memory. If not, it loads that PT page
·   Required page of process is accessed through this PT page

[image: ]

Address translation using two-level page table
· Address translation proceeds as follows:
· Page number pi in address (pi, bi) is split into two parts 
                     (PT page #, entry in PT page #)
· Where ‘PT page #’ is the number of the PT page that contains the page table entry for page pi 
· The number of page table entries in a PT page is a power of 2, so bit splitting is used for this operation
· Address translation is performed as follows:
· MMU raises a page fault if ‘PT page #’ is not present in memory
· Otherwise, it accesses the entry ‘entry in PT page #’ in this page.
    This is the page table entry of pi
· MMU raises a page fault if this page is not present in memory 

Two level page table organization
[image: ]
         
· pi  is split into two parts
· One is used to access entry of the PT page in higher order PT
·   The other one is used to access PT entry of pi
· bi  is used to access  required byte in the page

Multi-level page tables
· These tables are generalizations of the two-level page tables
· Two and multi-level page tables have been used
· Intel 30386 used two-level page tables
· Sun Sparc uses three-level page tables
· Motorola 68000 uses four-level page tables

VM Handler modules in a paged system
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· Page-in and page-out are paging mechanisms
·   The paging policy uses information in VM handler tables and 
   invokes these mechanisms when needed

Page replacement policies
· Three primary policies
· Optimal policy
· Not realizable in practice
· We use it only to evaluate other algorithms
· FIFO policy
· Needs information about when a page was loaded in memory
· Least-recently-used (LRU) policy
· Needs information about when a page was last used
· Needs a ‘time stamp’ of the last use of a page
· The VM hardware and software has to collect additional information to facilitate page replacement decisions

Page reference string
· A page reference string is a sequence of page numbers containing the pages referenced by a process during an execution, e.g.
                   1, 5, 3, 1, 2, 4, 1, 5, 3.
· If 3 page frames are allocated to a process, the page replacement algorithms will make the following decisions when page 2 is accessed
· FIFO page replacement algorithm would replace page 1
· LRU page replacement algorithm would replace page 5 
· Optimal page replacement algorithm would replace … which page?
· ‘Preempt the farthest reference’  is one of the optimal strategies 

Comparison of page replacement policies with 
alloc = 2
·   The misc info field contains a time-stamp
·   For FIFO, it is the time of loading 
·   For LRU, it is the time of last reference 
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Properties of page replacement policies
· The number of page faults should not increase if the memory allocation for a process is increased
· This requirement is satisfied if a page replacement policy possesses the inclusion property (also called the stack property)
· This property is important for ensuring good system performance
· If a process has a high page fault rate, increasing its memory allocation 
· May or may not reduce its page fault rate
· Would not increase its page fault rate

Inclusion property (also called stack property)
· Notation:
· { pi }kn  is the set of pages existing in memory at time tk+ if n page 
   frames are allocated to a process all through its execution
· A page replacement algorithm possesses the inclusion property if  
                        { pi }kn  is included in { pi }kn+1
·      –  This way, page faults would not increase if the process is       
·          allocated n+1 page frames instead of n frames (Q: Why?)
          –  Consider the page reference string
            5, 4, 3, 2, 1, 4, 3, 5, 4, 3, 2, 1, 5 …        
Performance of FIFO and LRU page replacement
[image: ]
· The element 4* in the page reference string indicates that a 
   page fault occurred when page 4 was referenced

Performance of FIFO and LRU page replacement
·   In FIFO replacement, page faults may increase as more memory is
   allocated. This is called Belady’s anomaly
·   LRU possesses the stack property, hence it does not suffer the anomaly

[image: ]

Practical page replacement policies
· Comparison
· FIFO does not perform well in practice 
· Because it does not possess the inclusion property
· LRU algorithm is impractical 
· Because of  the hardware cost of storing time of last reference; it requires a time-stamp in each entry of the page table
· Second chance algorithm is a hybrid algorithm
· Pages are entered in FIFO queue, which is scanned in circular manner when a page replacement is necessary
· The reference bit of the next page is checked
· If the bit is set, it is reset and the scan proceeds
· If the bit is not set, the page is replaced


Performance of FIFO and second-chance page replacement policies
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·   4* indicates that a page fault occurred when page 4 was referenced
·   In the second chance algorithm, a ‘.’ next to a page implies that
   the reference bit of the page is ‘on’

Clock algorithm
· Analogous to the second chance algorithm
· The pointer that moves over all pages in a scan is like a clock hand
· Two handed clock algorithm	
· A resetting hand (RH) and an examining hand (EH). When a page is to be replaced, the hands are moved synchronously
· The reference bit of the page pointed to by RH is reset
· The page pointed to by EH is examined
· If its reference bit is ‘on’, the scan proceeds
· Otherwise, the page pointed to by EH is replaced
Determining the memory allocation for a process
· Notation:
· alloci is the number of page frames allocated to process Pi
· How much memory should be allocated to a process?
· Too little memory
· Page fault rate would be high
· Too much memory
· Degree of multiprogramming in the system would be low
· System performance is affected in both these situations

· Thrashing is a situation in which each process in the system is allocated too little memory
· (In some literature, a process is said to thrash if it is allocated too little memory)
· Thrashing is characterized by two properties
· Too much page I/O is performed, i.e., too many page-ins / outs
· CPU does not have enough work to perform
· Q: How to avoid thrashing?
· Allocate adequate amount of memory to a process
· Vary the memory allocation to suit requirements of the process
· The notion of working set aids in both of these

Working set
· The working set (WS)  of a process is the set of pages referenced by it in the previous Δ machine instructions
· The VM handler determines the WS of a process periodically
· It determines WS size (WSS) and allocates those many page frames 
· If it cannot allocate those many page frames, it swaps out that process completely. This avoids thrashing
· It is called the working set memory allocator
· Since process locality changes gradually, rather than abruptly, each process performs well most of the time

Operation of a working set memory allocator
·   The system has 60 page frames
·   At t100, 8 page frames are free but WSS4=10, so proc4 is swapped out 
·   At t300, proc4 is swapped-in because alloc4 = WSS4 is possible
·   At t400, proc4  is swapped-out once again

Program sharing in virtual memory systems
· If two or more processes wish to use the code of the same program, is it possible to have only one copy of the program in memory?


Dynamic sharing of program C 
by processes A and B
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·   Program C occupies pages i  and i +1 in the address space of 
   process A but  j  and j +1 in address space of process B
·   Hence the operand of the Add instruction should be different
·   Hence a single copy of C cannot be shared by processes A and B
· Dynamic sharing of a single copy of program C by processes A and B	
· Two conditions have to be satisfied for such sharing
· Program C should be reentrant
· This way, it can be invoked simultaneously by A and B
· Program C should have identical addresses in the logical address spaces of processes A and B
· Page table entries of both A and B would point to the same copy of the pages of C
· Collection of page reference information becomes cumbersome
· Consequently, VM handler may handle shared pages separately

Copy-on-write
· Parent and child processes share their address spaces. Memory and swap space can be optimized by not replicating the pages
· The copy-on-write technique shares a single copy of a page until it is modified by one of the processes
· A page is made read only in both address spaces and a single copy of the page exists
· When a process modifies a page, it leads to a protection fault. A private copy of the page is now made for the process and added to its page table
· Thus multiple copies exist only for modified pages

Memory mapped files
· Memory mapping of a file by a process binds that file to a part of the logical address space of  the process
· When the process refers to data in the file, the VM handler organizes access to the corresponding part of its own address space
· Loading and writing of data in the file are performed by the VM handler analogous to the loading and replacement of pages in the logical address space of a process

Memory mapping of files
· Benefits
· Less memory-to-memory copying
· When data is read from a file, it is first read into an I/O buffer, and then moved into the logical address space of a process
· Memory mapping avoids this memory-to-memory copying
· Fewer disk operations
· A file page existing in memory may be accessed several times, thus avoiding several disk accesses
· Prefetching of data
· Data may be loaded in memory before it is accessed (because some other data in the same file page was accessed)
· Efficient data access
· Irrespective of the file organization
Virtual memory implementation using segmentation
·   The VM handler maintains a segment table (ST)
·   The MMU uses its contents for address translation of a logical
   address (si , bi)
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Use of symbolic segment and byte ids
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·   ids are associated with bytes within a segment
·   The compiler makes this information available to the VM handler
·   The VM handler puts this information in the segment link table (SLT)
·   The MMU uses it for address translation
Address translation in segmentation with paging
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·   A page table is maintained for each segment
·   The MMU splits a logical address into three components—
   si, pi  and bi

Virtual memory in Unix
· Text pages and the swap space
· A text (i.e., code) page is initially loaded from a code file
· The page is written in the swap file when swapped out; this way, only used text pages are added to the swap space
· When a process page faults for such a page, it may be in use by another process. In this case, a page-in operation is avoided
· A data page is called a zero-filled page. When it is removed from memory, it is written into the swap space
· Swap space is allocated in increments of a few disk blocks. A process has to be cancelled if its swap space cannot be increased when needed
· A copy-on-write feature is provided
· Paging
· The VM handler keeps 5% of page frames on the free list 
· It activates the pageout daemon if the number falls below 5%. The pageout daemon adds some page frames to the list and goes to sleep
· It maintains two lists of pages—active and inactive lists
· It always keeps a certain fraction of pages in the inactive list
· When it is activated by VM handler
· It swaps out inactive processes and examines their page frames and page frames of other processes that contain inactive pages
· Adds clean pages to the free list and starts pageout operations on dirty pages

Virtual memory in Linux
· Paging (contd)
· Linux uses three level page tables on 64-bit architectures, and a buddy system allocator
· VM handler maintains a sufficient number of free page frames using a clock algorithm
· If a process page faults for a page contained in a page frame that is marked free, it is simply ‘connected’ to the process 
· File backed memory region helps memory mapping of files, the private memory region provides copy-on-write

Virtual memory in Windows
· Salient features of Windows virtual memory
· The kernel is mapped into a part of each address space
· VM handler uses two level page tables
· It maintains state of each page frame
· A standby page is not a part of any working set, but it could be simply ‘connected’ to a process that page faults for it
· A section object represents shareable memory
· Each sharing process has a view of the object
· When a view is accessed for the first time, memory is allocated to that part of the object which is covered by the view
· A copy-on-write feature is provided
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