

SUBMITTED BY:-

UBAID HUSSAIN
C/05/517
B.E. -7TH (2005-2009)
SUBMITTED TO:-

COMPUTER SCIENCE & ENGINEERING
AL-FALAH SCHOOL OF ENGINEERING & TECHNOLOGY
MAHARASHI DAYANAND UNIVERSITY, ROHTAK[image: image1.png]

TABLE OF CONTENTS

1. ACKNOWLEDGEMENT

2. ABSTRACT

3. INTRODUCTION

4. OBJECTIVES

5. CONCEPTS & FACILITIES
5.1 KEY SEQUENCED DATA SET

5.2 ENTRY SEQUENCED DATA SET
5.3 RELATIVE RECORD DATA SET
6. ACCESS METHOD SERVICE

6.1 IDCAMS

6.2 ACCESS METHODS

6.3 OTHER ACCESS METHODS

6.4 VSAM DATA SPACE

6.5 NON-VSAM DATA SETS

7. VSAM CATALOGS

7.1 MASTER CATALOG

7.2 USER CATALOG

7.3 CONTROL INTERVALS

7.4 CONTROL AREAS

7.5 DEFINING ALIAS
8. SPACE ALLOCATION

8.1 RECORD SIZE

8.2 KEYS

8.3 RE-USABLE CLUSTERS

8.4 BUFFER SPACE
9. STATEMENT SYNTAX

9.1 TSO

9.2 MODAL COMMANDS

9.3 SPACE ALLOCATION

 10. FUTURE PROSPECTS & IMPROVISATION

ACKNOWLEDGEMENT

Today’s world is full of competitors. There is a race of existence, where only fittest & fastest can succeed. The intellectual work of candidate is adjusted not only by grades or marks obtained in the examination. But practical work matters a lot.

For getting practical training in our college I am preparing a seminar report on “VIRTUAL STORAGE ACCESS METHOD” & I am thankful to the principal of this college who is kind enough in giving me the permission to undergo & complete the seminar in college premises.

I would like to acknowledge the cooperation of Mr. S.N.SINGH (HOD C.S.E DEPTT.) & lecturer of C.S.E Dept. who helped me by providing necessary information of language & technology needed. We sincerely thank to my Seminar in-charge Ms. Sheweta Khandelwal (Lecturer) & Mr. Mohd. Arif (Senior Lecturer), who played a vital role in my seminar by giving their time to time guidance.

I am deeply indebted to principal AFSET for permitting me to work on this seminar. I am also thankful to other Lecturers & Lab staff for their guidance & cooperation on technical assistance.

UBAID HUSSAIN ZAHIDANI,
C/05/517.
ABSTRACT
Virtual storage access method (VSAM) is an IBM disk file storage access method, first used in the OS/VS2 operating system, later used throughout the Multiple Virtual Storage (MVS) architecture and now in z/OS. Originally a record-oriented filesystem, VSAM comprises four data set organizations: Key Sequenced Data Set (KSDS), Relative Record Data Set (RRDS),Entry Sequenced Data Set (ESDS) and Linear Data Set (LDS). The KSDS, RRDS and ESDS organizations contain records, while the LDS organization (added later to VSAM) simply contains a sequence of bytes with no intrinsic record structure.

IBM uses the term data set in official documentation as a synonym of file, and DASD instead of disk drive.

VSAM records can be of fixed or variable length. They are organised in fixed-size blocks called Control Intervals (CIs), and then into larger divisions called Control Areas (CAs). Control Interval sizes are measured in bytes — for example 4 kilobytes — while Control Area sizes are measured in disk tracks or cylinders. Control Intervals are the units of transfer between disk and computer so a read request will read one complete Control Interval. Control Areas are the units of allocation so, when a VSAM data set is defined, an integral number of Control Areas will be allocated.

The Access Method Services utility program IDCAMS is commonly used to manipulate ("delete and define") VSAM data sets.

Custom programs can access VSAM datasets through data definitions (DDs) in Job Control Language (JCL) or in online regions such as in Customer Information Control Systems (CICS).

Both IMS/DB and DB2 are implemented on top of VSAM and use its underlying data structures.

INTRODUCTION

Virtual Storage Access Method - VSAM - is a data management system introduced by IBM in the 1970s as part of the OS/VS1 and OS/VS2 operating systems. Although there are still datasets that are best managed with the several other (non-VSAM) data management methods, VSAM is a major component of modern IBM operating systems. Since MVS 3.8 is one of those operating systems, Multiple Virtual Storage, more commonly called MVS, was the most commonly used operating system on the System/370 and System/390

HYPERLINK "http://en.wikipedia.org/wiki/IBM_mainframes" \o "IBM mainframes"IBM mainframe computers. It was developed by IBM, but is unrelated to IBM's other mainframe operating system, VM.

First released in 1974, MVS had been renamed multiple times, first to MVS/XA (eXtended Architecture), next to MVS/ESA (Enterprise Systems Architecture), then to OS/390 (when UNIX System Services (USS) were added), and finally to z/OS (when 64-bit support was added with thezSeries models). Its core remains fundamentally the same operating system. By design, programs written for MVS can still run on z/OS without modification.

At first IBM described MVS as simply a new release of OS/VS2. But it was in fact a complete re-write - previous OS/VS2 releases were upgrades of OS/MVT and, like MVT, were mainly written in Assembler; the core of MVS was almost entirely written in PL/S. IBM's use of "OS/VS2" emphasized upwards compatibility: application programs which ran under MVT did not even need to be re-compiled in order to run under MVS; the same Job Control Language files could be used unchanged; the utilities and other non-core facilities like TSO ran unchanged. But users almost unanimously called the new system MVS from the start, and IBM followed their lead in the naming of later major versions such as MVS/XA. After the release of MVS, users described earlier OS/VS2 releases as SVS (Single Virtual Storage).
Evolution of MVS

OS/MFT (Multitasking with a Fixed number of Tasks) provided multitasking: several memory partitions, each of a fixed size, were set up when the operating system was installed. For example, there might be a small partition, two medium partitions, and a large partition. If there were two large programs ready to run, one would have to wait on the other until it finished and vacated the large partition.

OS/MVT (Multitasking with a Variable number of Tasks) was an enhancement which further refined memory usage. Instead of using fixed-size memory partitions, MVT allocated memory to programs as needed provided there was enough contiguous physical memory available. This was a significant advance over MFT's memory management: there was no predefined limit on the number of jobs that could run at the same time; and two or more large jobs could run at the same time if enough memory was available. But it had some weaknesses: if a job allocated memorydynamically (as most sort programs and database management systems do), the programmers had to estimate the job's maximum memory requirement and pre-define it for MVT; a job which contained a mixture of small and large programs would waste memory while the small programs were running; most seriously, memory could become fragmented, i.e. the memory not used by current jobs could be divided into uselessly small chunks between the areas used by current jobs, and the only remedy was to wait until all current jobs finished before starting any new ones.

In the early 1970s IBM sought to mitigate these difficulties by introducing virtual memory (referred to by IBM as "virtual storage"), which allowed programs to request address spaces larger than physical memory. The original implementations had a single virtual address space, shared by all jobs. OS/VS1 was OS/MFT within a single virtual address space; OS/VS2 SVS was OS/MVT within a single virtual address space. So OS/VS1 and SVS in principle had the same disadvantages as MFT and MVT but the impacts were less severe because jobs could request much larger address spaces.

	MVS address spaces - global view
MVS (shared part of all address spaces)

App 1

App 2

App 3

Shared virtual area (controlled by MVS)

	One application's view
MVS

App 1

Shared virtual area

In the mid-1970s IBM introduced MVS, which allowed an indefinite number of applications to run in different address spaces - two concurrent programs might try to access the same virtual memory address, but the virtual memory system redirected these requests to different areas of physical memory. Each of these address spaces consisted of 3 areas: operating system (one instance shared by all jobs); application area which was unique for each application; shared virtual area which was used for various purposes including inter-job communication. IBM promised that the application areas would always be at least 8MB.

MVS originally supported 24-bit addressing (i.e. up to 16MB). As the underlying hardware progressed it supported 31-bit (XA and ESA; up to 2048MB) and now (as z/OS) 64-bit addressing. Two of the most significant reasons for the rapid upgrade to 31-bit addressing were: the growth of large transaction-processing networks, mostly controlled by CICS, which ran in a single address space; theDB2 relational database management system needed more than 8MB of application address space in order to run efficiently (early versions were configured into two address spaces which communicated via the shared virtual area, but this imposed a significant overhead since all such communications had to be transmitted via the operating system).

The main user interfaces to MVS are: Job Control Language (JCL), which was originally designed for batch processing but from the 1970s onwards was also used to start and allocate resources to long-running interactive jobs such CICS; and TSO (Time Sharing Option), the interactive time-sharing interface, which was mainly used to run development tools and a few end-user information systems. ISPF is a TSO application for users on 3270-family terminals (and later, on VM as well) which allows the user to accomplish the same tasks as TSO's command line but in a menu and form oriented manner, and with a full screen editor and file browser. TSO's basic interface is command line, although facilities were added later for creating form-driven interfaces).

Early editions of MVS (mid-1970s) were among the first of the IBM OS series to support multiprocessor configurations, though it had previously been supported in the 1960s on a limited basis by the M65MP variant of OS/360 running on 360/65 and 360-67. The 360-67 had also hosted the multiprocessor capable TSS/360 and MTS operating systems. In tightly-coupled systems, two CPUs shared concurrent access to the same memory (and copy of the operating system) and peripherals, providing greater processing power and a degree of graceful degradation if one CPU failed. In loosely-coupled configurations each of a group of processors (single and / or tightly-coupled) had its own memory and operating system but shared peripherals and the operating system component JES3 allowed the whole group to be managed from one console - this provided greater resilience and enabled operators to decide which processor should run which jobs from a central job queue.

MVS took a major step forward in fault-tolerance that IBM called 'software recovery'. IBM decided to do this after years of practical real-world experience with MVT in the business world - system failures were now having major impacts on customer businesses and IBM decided to take a major design jump, to assume that despite the very best software development and testing techniques, that 'problems WILL occur'. This profound assumption was pivotal in adding great percentages of fault-tolerance code to the system, but likely contributed to the system's success in tolerating software and hardware failures. Statistical information is hard to come by to prove the value of these design features (how can you measure 'prevented' or 'recovered' problems?), but IBM has, in many dimensions, enhanced these fault-tolerant software recovery and rapid problem resolution features, over time.

This design specified a hierarchy of error-handling programs, in system (kernel/'privileged') mode, called Functional Recovery Routines, and in user ('task' or 'problem program') mode, called "ESTAE" (Extended Specified Task Abnormal Exit routines) that were invoked in case the system detected an error (actually, hardware processor or storage error, or software error). The purpose of each recovery routine was to make the 'mainline' function reinvokable, capture error diagnostic data sufficient to debug the causing problem, and either 'retry' (reinvoke the mainline) or 'percolate' (escalate error processing to the next recovery routine in the hierarchy).

Thus, with each and every error: diagnostic data was captured, an attempt was made to perform a repair and keep the system up. The worst thing possible was to take down a user address space (a 'job') in the case of unrepaired errors. Although it was an initial design point, it was not until the most recent MVS version (z/OS), that recovery program was not only guaranteed its own recovery routine, but each recovery routine now has its own recovery routine.

This recovery structure was embedded in the basic MVS control program, and programming facilities are available and used by application program developers and 3rd party developers.

Practically, it has been observed that the MVS software recovery made problem debugging both easier and more difficult: Software recovery required that programs leave 'tracks' of where they were and what they were doing, thus facilitating debugging, but the fact that processing does not stop at the time of an error, but rather progresses, can make the tracks over-written. Early date capture at the time of the error maximizes debugging, and facilities exist for the recovery routines (task and system mode, both) to do this.

IBM included additional criteria for a major software problem that would require IBM service to repair it: If a mainline component failed to initiate software recovery, that was considered a reportable valid failure. Also, if a recovery routine failed to collect significant diagnostic data such that the original problem was solvable by data collected by that recovery routine, IBM standards dictated that this fault was reportable and required repair. Thus, IBM standards, when applied rigorously, would encourage continuous improvement.

IBM introduced an on-demand hypervisor, a major serviceability tool, called Dynamic Support System (DSS), in the first release of MVS. This facility could be invoked to initiate a session to create diagnostic procedures, or invoke already-stored procedures. The procedures 'trapped' special events, such as the loading of a program, device I/O, system procedure calls, and then triggered the activation of the previously-defined procedures. These procedures, which could be invoked recursively, allowed for reading and writing of data, and alteration of instruction flow. Program Event Recording hardware was used. Due to the overhead of this tool, it was removed from customer-available MVS systems. Program-Event Recording (PER) exploitation was performed by the enhancement of the diagnostic "SLIP" command with the introduction of the PER support (SLIP/Per) in SU 64/65 (1978).

Multiple copies of MVS (or other IBM operating systems) could share the same machine if that machine was controlled by VM/370 - in this case VM/370 was the real operating system and regarded the "guest" operating systems as applications with unusually high privileges. As a result of later hardware enhancements one instance of an operating system (either MVS, or VM with guests, or other) could also occupy a Logical Partition (LPAR) instead of an entire physical system.

Multiple MVS instances can be organized and collectively administered in a structure called a systems complex or sysplex, introduced in September, 1990. Instances interoperate through a software component called a Cross-system Coupling Facility (XCF) and a hardware component called a Hardware Coupling Facility (CF or Integrated Coupling Facility, ICF, if co-located on the same mainframe hardware). Multiple sysplexes can be joined via standard network protocols such as IBM's proprietary Systems Network Architecture (SNA) or, more recently, viaTCP/IP.

The z/OS operating system (MVS' most recent descendant) also has native support to execute POSIX applications.

Files are properly called data sets in MVS. Names of those files are organized in catalogs which are VSAM files themselves.

The native encoding scheme of IBM mainframes and their peripherals is Big Endian EBCDIC, but MVS provides hardware-accelerated services to perform translation and support of ASCII, Little Endian, and Unicode.

 Two main segments -

Concepts and Facilities
Access Method Services

In the first segment, is a simple description of the components of VSAM, with the goal of introducing VSAM to those who have not had practical experience with it. It is perception that quite a few people are coming into the Hercules (and MVS) community who have not had any formal exposure to this type of material.

 In the second segment, it includes of the functions provided by Access Method Services. Access Method Services is the single, general-purpose utility that is used to manipulate VSAM components by both Systems and Applications Programmers.

OBJECTIVES

Concepts and Facilities

VSAM was, by several accounts, intended to replace all of the earlier data management systems in use by IBM's operating systems. Conventional (non-VSAM) access methods generally provide only a single type of dataset organization. VSAM provides three:

· Key Sequenced Data Set (KSDS), where each record is identified for access by specifying its key value - a sequence of characters embedded in each data record which uniquely identifies that record from all other records in the dataset. KSDS datasets are similar to Indexed Sequential Access Method (ISAM) datasets, with many of the same characteristics, but also having distinct advantages over ISAM.

· Entry Sequenced Data Set (ESDS), where each record is identified for access by specifying its physical location - the byte address of the first data byte of each record in relationship to the beginning of the dataset. ESDS datasets are similar to Basic Sequential Access Method (BSAM) or Queued Sequential Access Method (QSAM) datasets.

· Relative Record Data Set (RRDS), where each record is identified for access by specifying its record number - the sequence number relative to the first record in the dataset. RRDS datasets are similar to Basic Direct Access Method (BDAM) datasets.

VSAM datasets are frequently referred to as clusters. A KSDS cluster consists of two physical parts, an index component, and a data component. ESDS and RRDS clusters consist of only a single component, the data component.

KSDS Cluster Components

In a KSDS, records are placed in the data set in ascending collating sequence by key. The key contains a unique value that determines the record's collating position in the data set. The key must be in the same position in each record. The key data must be contiguous and each record's key must be unique. After it is specified, the value of the key cannot be altered, but the entire record can be deleted. When a new record is added to the data set, it is inserted in its collating sequence by key. This could be fixed or variable length record. There are three methods by which to access a KSDS. These are sequential, direct, or skip-sequential.

SEQUENTIAL ACCESS is used to load a KSDS, and to retrieve, update, add and delete records in an existing data set. VSAM uses the index to access data records in ascending or descending sequence by key. When retrieving records, you do not need to specify key values because VSAM automatically obtains the next logical record in sequence. The sequence set is used to find the next logical CI. Sequential access allows you to avoid searching the index more than once. Sequential is faster than direct for accessing multiple data records in ascending key order.

DIRECT ACCESS is used to retrieve, update, add and delete records in an existing data set. You need to supply a key value for each record to be processed. You can supply the full key or a generic key. The generic key is the high order portion of a full key. For example, you might want to retrieve all records whose keys begin with XY (where XY is the generic key), regardless of the full key value. VSAM searches the index from the highest-level index set CI to the sequence set for a record to be accessed. Vertical pointers in the sequence set CI are used to access the data CA containing the record. Direct access saves you a lot of overhead by not retrieving the entire data set sequentially to process a small percentage of the total number of records.

SKIP-SEQUENTIAL ACCESS is used to retrieve, update, add and delete records in an existing data set. VSAM retrieves selected records, but in ascending sequence of key values. Skip sequential processing allows you to - Avoid retrieving the entire data set sequentially in order to process a relatively small percentage of the total number of records. Avoid retrieving the desired records directly, which causes the index to be searched from top to bottom level for each record For each request the sequence set is used to find the next logical CI and to check if it contains the requested record. If the first skip-sequential search is the first access after opening the data set, a direct search is initiated by VSAM to find the first record. From then on the index sequence set level will be used to find the subsequent records. If other operations were performed before (for example, read sequential), either the last position of that operation will be used as a starting point to search the sequence set records, or a re-positioning is necessary. You specify the KSDS organization using the IDCAMS DEFINE command with the INDEXED parameter
ESDS Cluster Components

An ESDS is comparable to a sequential non-VSAM data set in the sense that key field in the logical record sequences records by the order of their entry in the data set, rather than. This could be fixed or variable length record. All new records are placed at the end of the data set. Existing records can never be deleted. If the application wants to delete a record, it must flag that record as inactive. As far as VSAM is concerned, the record is not deleted. It is the responsibility of the application program to identify that record as invalid. Records can be updated, but without length change. To change the length of a record, you must either store it at the end of the data set as a new record, or override an existing record of the same length that you have flagged as inactive.

A record can be accessed sequentially or directly by its RBA:

Sequential processing: VSAM automatically retrieves records in stored sequence. Sequential processing can be started from the beginning or somewhere in the middle of a data set. If processing is to begin in the middle of a data set, positioning is necessary before sequential processing can be performed.

Direct processing: When a record is loaded or added, VSAM indicates its RBA. To retrieve records directly, you must supply the RBA for the record as a search argument. Although an ESDS does not contain an index component, you can build an alternate index to keep track of these RBAs. Skip sequential processing is not allowed for an ESDS.

RRDS Cluster Components

An RRDS consists of a number of pre-formatted fixed-length slots. Each slot has a unique relative record number, and ascending relative record number sequences the slots. Each fixed length logical record occupies a slot, and is stored and retrieved by the relative record number of that slot. The position of a data record is fixed and its relative record number cannot change.

Because the slot can either contain data or be empty, a data record can be inserted or deleted without affecting the position of other data records in the RRDS. The RDF shows whether the slot is occupied or empty. Free space is not provided because the entire data set is divided into fixed-length slots.

Typical RRDS processing:-
The application program inputs the relative record number of the target record and VSAM is able to find its location quickly using a formula that takes into consideration the geometry of the DASD device. The relative record number is always used as a search argument. An RRDS can be processed sequentially, directly or skip-sequentially.

RRDS sequential processing is treated the same way as ESDS sequential processing. Empty slots are automatically skipped by VSAM.

RRDS can be processed directly by supplying the relative record number as a key. VSAM calculates the RBA and accesses the appropriate record or slot. RRDS direct address processing by supplying the RBA is not supported.
Skip-sequential processing is treated like an RRDS direct processing request, but the position is maintained. Records must be in ascending sequence. You specify the RRDS organization using the IDCAMS DEFINE command with the NUMBERED option.
[image: image2.png]o

[interface: SQL. XQuery

i P

FILE MANAGEMENT SYSTEM USING SQL QUERIES.

[image: image3.png]VSAM
Operation &
Optimization

VSAM
Performance
& Tuning

VSAM
Structure &

Strategies

VSAM for
Programmers

VSAM MODULES

Access Method Services

Pre-VSAM data management required many utility programs for housekeeping -

· IEBGENER to copy the contents of sequential datasets

· IEHMOVE and IEBCOPY to copy, move, reorganize, expand, backup and restore the contents of partitioned dataset

· IEBISAM to load, backup, restore, and reorganize the contents of ISAM datasets to name a few. However, there is only a single utility for managing all of the housekeeping needs of VSAM -

IDCAMS:-
Which is also known by the functionality it provides, Access Method Services or, simply, AMS. IDCAMS is a utility that exclusively handles all types of VSAM data sets. The following list provides an overview of the functions that can be performed with this utility on the VSAM datasets.
Function

Command

To Create any VSAM object

DEFINE

To copy data from a VSAM object to

another or a non-VSAM dataset

REPRO

To Print a VSAM file

PRINT

To delete any VSAM object

DELETE

To List the Characteristics of a VSAM object

LISTCAT

This command is a necessary and very useful facility. The catalog contains all the information about the VSAM file.
The basic JCL to run the utility is:

	//IDCAMS JOB 'JAY MOSELEY',CLASS=A,MSGLEVEL=(1,1),MSGCLASS=A

//IDCAMS EXEC PGM=IDCAMS,REGION=4096K

//SYSPRINT DD SYSOUT=A

//SYSIN DD *

/* UTILITY COMMAND STATEMENTS */

/*

//

Some of the functions require additional DD statements when they are referenced by the AMS command statements, but SYSPRINT and SYSIN are the only absolute requirements.

Access Methods:-
Data (Records) from the files (databases) can be retrieved in the following modes:

Sequential – This access method allows users to read the records in the order of entry into the file. This mode is most useful while preparing reports on VSAM

Random – This access method allows users to access the file based on a key value, or in a sequential mode starting from a key value as desired. This mode is more used in updating master files through online real time applications.

Direct – This access mode facilitates records to be selected on the basis of the location of the record in the file. The address of the record to be read is used to locate the record.

Other Access methods:-
The following are the access methods that were used for accessing files before the advent of VSAM.

VSAM as an access method provides ability to maintain and access data in all the following formats.

QSAM – Queried Sequential Access Method

BSAM – Basic Sequential Access Method for ‘flat’ files

ISAM – Index Sequential Access Method for Index files

BDAM – Basic Direct Access Method for direct access files

VSAM Data Space:-
Before VSAM clusters can be created on a volume, one or more data spaces must be created. A data space is an area of the direct access storage device that is exclusively allocated for VSAM use. That is, the area occupied by the data space is recorded in the Volume Table of Contents (VTOC) of the volume as allocated to a dataset, so that the space will not be available for allocation to any other use, either VSAM or non-VSAM. There are three data spaces shown in the chart (#4, #5, and #6).

Actually, when either the master catalog or a user catalog is defined, VSAM creates a data space to hold the user catalog entries, allocating the amount of space specified for the user catalog from the space available on the volume as a data space which will be completely allocated to the catalog.

The name of the files that are recorded in the VTOC for space allocated to catalogs and data spaces is generated by VSAM. However, they can be easily recognized for what they contain from the high level qualifier of the generated name. For catalogs (both master and user), the high level qualifier is Z9999992. For data spaces, the high level qualifier is Z9999994.

Unique Clusters:-
It is possible to create VSAM clusters out of unallocated space on direct access storage. This type of cluster has a designation of UNIQUE and essentially consists of a separate data space which is utilized completely by the cluster created within it. From a data management viewpoint, it is not a good idea to create unique VSAM clusters, although in some cases there are system datasets which are created in this manner. There is an indication of this type of cluster allocation on the chart (#9).

The most frequent manner of creating VSAM clusters is to suballocate the space required for the cluster's records from available space in a previously defined data space. Suballocated clusters are indicated on the chart for both system and user datasets (#7, #8, and #10).

For all VSAM objects except suballocated clusters, there is an entry placed in the VTOC of the direct access storage device volume on which the object resides. The entry name generated by VSAM for these objects is usually not mnemonic enough to visually indicate the contents of the VSAM object.

Non-VSAM Datasets:-
In addition to VSAM objects, non-VSAM datasets (residing on both tape and direct access storage) may have entries in both the master catalog and user catalogs. As with VSAM objects, it is best if only system datasets are cataloged in the master catalog. Since the main function of cataloging non-VSAM datasets is to retain Unit and Volume Serial information, the amount of information stored for a non-VSAM dataset is minimal compared to the information stored for a VSAM object. Non-VSAM objects are indicated on the chart as #11, #12, and #13.
VSAM CATALOGS
When a non-VSAM dataset is created, the user has the option, by means of the DISP=(,CATLG) JCL entry, of creating a catalog entry for the dataset. The catalog keeps track of the unit and volume on which the dataset resides and can be used for later retrieval of the dataset. With VSAM datasets, creation of a catalog entry to record the unit and volume, as well as many other characteristics of the dataset, is not optional.

Prior to VSAM, catalog entries for non-VSAM datasets were contained in OS CVOLS (operating system control volumes). VSAM maintains its own catalog, which is itself a KSDS cluster, into which catalog entries describing VSAM clusters are recorded. The same VSAM catalog may also be used to contain the catalog entries for non-VSAM datasets.

Later releases of OS/390, the operating system into which MVS evolved, and z/OS, the current incarnation of MVS-OS/390, use yet another catalog system - the Integrated Catalog Facility. On the latest versions of OS/390 and z/OS, ICF catalogs are the only type of catalogs supported.

For MVS 3.8j, the relevant catalog system is the VSAM catalog, which is where information for both VSAM and non-VSAM datasets is recorded.

Catalogs, Data Spaces, and Clusters :-

Begining with a graphic representation of the components and their relationships to one another, and then describe the rules governing the relationships.

[image: image4.jpg]Master
Catalog

User User
Cataog Catiog
i 2
Daa 5" owa %" baa
Space Spaco Space
T 2 3
7 8 10,

9,
Subaliocatod| ‘Suballocatod| Unique ‘Subalocatod|
Clustars Clusters Clusters Clusters

(

12 5 13
([O ooy O [O
3 ;s o

VSAM CATALOG & DATA SAPCE STRUCTURE

Master Catalog:-
Every system that uses VSAM has one, and only one, master catalog. The master catalog contains entries about system datasets and VSAM structures used to manage the operation of VSAM. It is possible for any dataset (VSAM or non-VSAM) to be cataloged in the master catalog, but that is rarely allowed in well managed systems. In most computer systems, the Systems Programming staff will have created user catalogs, which are cataloged in the master catalog; all other users of the computer system will only be allowed to catalog datasets in those user catalogs. In the chart, the objects which have been shaded gray are the objects (excluding user catalogs) which are cataloged in the master catalog. In a typical system, these objects would all be system datasets, such as the system libraries (non-VSAM datasets) and page datasets.

The master catalog is created during the System Generation process and usually resides on the System Residence volume. The master catalog "owns" all other VSAM resources in a computer system, and this is denoted by the position of the master catalog (#1) in the chart. To quote a fairy tale that was popular in the 1970s that was used to describe the relationship of VSAM components, the master catalog is the "VSAM King".

User Catalogs:-
A user catalog is a catalog created to contain entries about application specific datasets. The information defining a user catalog is stored into a catalog entry in the master catalog. A production system might have any number of user catalogs, with the datasets cataloged in a specific user catalog related by application type. There are two user catalogs shown in the chart (#2 and #3).

Control Intervals:-
In non-VSAM data management methods, the unit of data that is moved between memory and the storage device is defined by the block. In VSAM, the unit of data that is transferred in each physical I/O operation is defined as a control interval. A control interval contains records, control information, and (in the case of KSDS clusters) possibly free space which may later be used to contain inserted records.

When a VSAM dataset is loaded, control intervals are created and records are written into them. With KSDS clusters, the entire control interval is usually not filled. Some percentage of free space is left available for expansion. With ESDS clusters, each control interval is completely filled before records are written into the next control interval in sequence. With RRDS clusters, control intervals are filled with fixed-length slots, each containing either an active record or a dummy record. Slots containing dummy records are available for use when new records are added to the dataset.

Control Areas:-
Control intervals are grouped together into control areas. The rules used for filling and writing control areas are similar to those which apply for control intervals. For ESDS and RRDS clusters, control areas are filled with control intervals that contain records. For KSDS clusters, some of the control intervals in each control area may consist entirely of free space that can be used for dataset expansion.

Defining an Alias:-
There are several ways that VSAM determines which catalog to use when a catalog search is required, either to locate a catalog entry for an existing object or to create a catalog entry one for a new object. Most AMS commands can explicitly specify which catalog is to be used by including a CATALOG parameter in the command. The inclusion of a CATALOG parameter overrides any other method for determining the catalog to use. Another way to explicitly define the catalog to be used is by including the JOBCAT and/or STEPCAT DD statements in the JCL for the job. If neither of these methods is used to designate the catalog to use, AMS uses the high level qualifier of the object or dataset name and attempts to determine the catalog to search. If the high level qualifier matches the name of a user catalog, that user catalog is used. Otherwise, the master catalog is used.

It is possible to establish any number of alias entries to associate multiple high level qualifier values with a specific user catalog. The AMS command to create aliases is DEFINE ALIAS.

Model syntax for the command:

	DEFINE ALIAS
 (NAME(aliasname)
 RELATE(entryname))

 [CATALOG(catname[/password])]

Deleting VSAM and non-VSAM Objects:-
The DELETE command removes the entry for the specified object(s) from the catalog and optionally removes the object, thereby freeing up the space occupied by the object (in the case of datasets residing on direct access storage).
Variety of VSAM and non-VSAM objects may be deleted with the DELETE command. The DELETE command deletes all objects associated with the entry name specified. By default, objects with a retention period that has not expired will not be deleted. This behavior can be overridden by the inclusion of the PURGE option.
The ERASE / NOERASE option may be specified to override the ERASE attributed specified for the object in the catalog.

The FORCE option may be specified to cause the deletion of specific objects (SPACE, USERCATALOG, GENERATIONDATAGROUP) even though they may be non-empty.

The SCRATCH option may be specified to cause the associated entry for the object to be removed from the Volume Table of Contents. This is most often applicable to non-VSAM datasets.

The CATALOG option may not be specified for DELETE commands used to delete user catalogs. User catalog entries may only be deleted from the master catalog. Note: It is possible with MVS 3.8j to catalog a user catalog entry in another user catalog, but if you do, you cannot delete it.
Listing Catalog Entries:-
The LISTCAT command is provided to list the information from catalog entries. If you have been reading this page in sequence, you have already seen output from the LISTCAT command in the SYSOUT listings from my examples of many of the other AMS commands. It is almost always a good idea to list the catalog entries for objects immediately following their creation to visually verify that all of the options you intended to specify were entered correctly and had the desired effect on the entry created. It is also frequently necessary to list fields from the catalog entry for a VSAM object to diagnose problems.

All parameters of the LISTCAT command are optional.

 The first group of parameters (beginning with ALIAS and concluding with USERCATALOG) are positional parameters that specify which types of catalog entries are to be listed. One or more of these parameters may be specified. If none are specified, the listing will include all entries from the catalog regardless of type.

CREATION specifies a number of days; entries are listed only if they were created the specified number of days ago or earlier.

EXPIRATION also specifies a number of days; entries are listed only if they will expire in the specified number of days or earlier.

The parameters NAME, HISTORY, VOLUME, ALLOCATION, and ALL specify the type of information to list for catalog entries. NAME (the default) specifies that only the name and entry type should be listed. HISTORY specifies that the name, entry type, ownerid, creation date, and expiration date should be listed. VOLUME specifies that all information listed by the HISTORY parameter, plus the volume serial numbers and device type should be listed. ALLOCATION specifies that all information listed by the VOLUME parameter, plus the detail information about space allocation should be listed. ALL specifies that all information from the catalog entry should be listed.
SPACE ALLOCATION
One of the three space allocation sub-parameters must be coded to specify the size of the cluster. Space may be requested in terms of cylinders, tracks, or records. Both a primary and secondary quantity may be specified for either of the three specification units. The primary quantity is the amount of space initially allocated to the cluster. The secondary quantity is the amount of additional space allocated when the available space is completely used and an additional record is added to the cluster. The number of times that a cluster can be expanded (secondary quantities of space allocated) varies based on several factors, but may be as high as 123 times. The RECORD method of allocation space is preferred, as AMS will calculate the appropriate amount of space for the type of direct access storage device upon which the cluster is allocated.

The VOLUMES parameter specifies one or more direct access storage volumes on which space may be allocated for the cluster.

Where the space is obtained for allocation is determined by the UNIQUE / SUBALLOCATION parameter. If UNIQUE is specified, free space must exist on the VOLUMES specified; an independent data space is created on the volume and is allocated entirely to the cluster being defined. From a data management viewpoint, this is usually not a good idea. A better method is to allow AMS to suballocate the required space from an already defined VSAM data space.

Type of Cluster - Key Sequenced, Entry Sequenced, or Relative Record:-

The presence of the INDEXED, NONINDEXED, or NUMBERED parameters determine the type of cluster created. INDEXED specifies a Key Sequenced cluster; NONINDEXED specifies an Entry Sequenced cluster; and NUMBERED specifies a Relative Record cluster.
Record Size:-
The RECORDSIZE parameter specifies both the size of the logical record which can be written to the cluster and also whether the records will be fixed or variable length. If the integer values of bothaverage and maximum are identical, the records which can be written to the cluster will be fixed length and of the size specified by the value. If the values specified differ, the records written to the cluster may be in varying length, up to the value specified for maximum.

Keys (INDEXED clusters only):-
The KEYS parameter specifies the length and position (relative to the beginning of the record, with 0 indicating the first character) of the primary key in the records written to the cluster.

Re-Usable Clusters:-
The REUSE parameter allows clusters to be defined that may be reset to empty status without deleting and re-defining them. This is most often used for clusters used as work datasets.

Buffer Space:-
BUFFERSPACE is used to specify the minimum amount of buffer space required to process the dataset. The value specified affects the control interval size. AMS ordinarily chooses a control interval size large enough that two control intervals and one index record will fit in the specified amount of buffer space. Regardless of what value is coded here (or the default), the value may be overridden at execution time by JCL parameter.

Control Interval Size:-
In most cases, the CONTROLINTERVALSIZE parameter should be omitted. This allows AMS to choose the most efficient value for the dataset. A control interval can range from 512 to 32,768 bytes in size. If the size is between 512 and 8,192 bytes, a multiple of 512 should be specified. If it is between 8,192 and 32,768 bytes, a multiple of 2,048 should be specified. If the size is not a multiple of the appropriate value, AMS rounds the size up to the next appropriate multiple. If CONTROLINTERVALSIZE is specified for the INDEX component of a KSDS, the specified size must be 512, 1,024, 2,048, or 4,096.

Erase:-
The ERASE parameter specifies that when the cluster is deleted, the space occupied by the cluster should be physically erased by overwriting the space with binary zeros prior to freeing the space for reuse.

Free Space (INDEXED clusters only):-

The FREESPACE parameter specifies a percentage of space to leave unallocated for future expansion. The percentage applies when records are initially loaded into the cluster and when control interval and control area splits occur as records are inserted between existing records. If FREESPACE is not specified, control intervals are filled as completely as possible and no space is left for addition of records in the future.

Replicate and Imbed (INDEXED clusters only):-
REPLICATE specifies that VSAM should write each index record on a track as many times as it will fit. IMBED specifies that sequence set records are to be imbedded with the data in the data component of the cluster. When the sequence set is imbedded in the data component, VSAM writes each sequence set record on the first track of its associated control area. IMBED automatically implies REPLICATE. Without imbedding, the sequence set records are kept in the index component with other index records. The use of REPLICATE and IMBED may improve performance at the expense of an increase in storage requirements.

Pre-Formatting Space:-
The SPEED / RECOVERY parameters are used to specify whether or not VSAM should preformat the space allocated to the cluster as part of the DEFINE process. Specifying RECOVERY (the default) causes the allocated space to be filled with end-of-file markers. If the initial load of the cluster with data should fail before completion, the end-of-file markers can be used to resume the load from the point of failure. For large datasets, this can save recovery time, however there is a trade-off in time to write the end-of-file markers during the definition of the cluster.
STATEMENT SYNTAX
The format of AMS commands is basically free form, and resembles REXX or PL/1. The default statement margins are positions 2 through 72. Any command statement may be continued from one line to the next by following the last parameter in a line with a hyphen (-). A value may be continued by immediately following it with a plus sign (+). A comment may be embedded in the command statements by enclosing the comment characters with /* and */. Blank lines may be included at any point before, interspersed with, or following AMS commands. Positional parameters are not optional and must precede all keyword parameters. Keyword parameters can stand alone or they may have an associated set of values or a subparameter list enclosed in parentheses. Parameters, subparamenters, and values are separated from one another by spaces, commas, or comment blocks.

TSO:- TIME SHARING OPERATING
Most IDCAMS commands such as DELETE, DEFINE, ALTER, BLDINDEX and REPRO are also available as TSO commands. The syntax of TSO commands is the same as the syntax of the corresponding IDCAMS commands, although the rules for abbreviating key-words are somewhat different. Note that Dynamic Allocation may use different defaults in TSO and in batch; a cluster DEFINEd in TSO may be allocated on a different volume than if it had been DEFINED in an IDCAMS batch job. Example of a DEFINE command for a KSDS, using system defaults for VOLUME, SPACE and RECSIZE:

 DEFINE CL(NAME(TESTKSDS) KEYS(8 0))

The TSO/E ALLOCATE and FREE commands fully support VSAM. In particular, ALLOCATE provide the same capability to allocate a VSAM cluster as exists in the JCL; here is an example:

 ALLOC DS(TESTKSDS) RECORG(KS) LRECL(500) KEYLEN(8) NEW

Similarly, the DELETE option of the FREE command can be used to DELETE a previously allocated VSAM data set:

 FREE DS(TESTKSDS) DELETE

The following VSAM-related TSO commands are available on the CBT Tape.

· REVIEW is a free TSO command currently maintained by Greg Price; REVIEW allows the user to display all sorts of data sets (including VSAM and SMF) in full-screen mode. The source code for REVIEW can be found in file 134 of the CBT Tape, and the load-module in file 135.

· INITKSDS is a free TSO command written in assembler which initialises a newly-defined KSDS by writing a dummy record into it, then deleting it. INITKSDS is part of the author's contribution to the CBT Tape.

The TSO RENAME command does not support VSAM data sets; ALTER should be used instead.

MODAL COMMANDS
It is possible to include AMS commands to perform more than one function in a single execution of the IDCAMS utility. Therefore, AMS sets a return code following the execution of each command, and also maintains a maximum return code value for each execution. AMS commands are provided to interrogate these return codes and conditionally execute command statements based on the return code set during the execution of prior commands.

The return codes set by AMS can be interpreted as -

· 0 - Normal Completion - the functional command completed its processing successfully

· 4 - Minor Error - processing is able to continue, but a minor error occurred, causing a warming message to be issued

· 8 - Major Error - processing is able to continue, but a more severe error occurred, causing major command specifications to be bypassed

· 12 - Logical Error - generally, inconsistent parameters are specified, causing the entire command to be bypassed

· 16 - Severe Error - an error of such severity occurred that not only can the command causing the error not be completed, the entire AMS command stream is flushed

IF - THEN - ELSE Structure:-
The statement structure used to conditionally execute commands based upon the return code values is an IF - THEN - ELSE structure:

	IF {LASTCC | MAXCC} {operator} {numeric value}
 THEN {command} |
 DO
 {command set}
 END
[ELSE {command} |
 DO
 {command set}
 END]

In the IF statement, the return code to be tested is specified as one of LASTCC or MAXCC, where LASTCC specifies the return code set during the execution of the command just prior to the IF structure and MAXCC specifies the largest return code value set during this execution if IDCAMS. The {operator} is specified as one of the following comparison operators:

	EQ or =
	equal to

	NE or ¬=
	not equal to

	GT or >
	greater than

	LT or <
	less than

	GE or >=
	greater than or equal to

	LE ro <=
	less than or equal to

Following the THEN keyword or the optional ELSE keyword, either a single AMS command or a block of AMS commands enclosed in a DO/END pair may be coded.

Null Commands:-
If a THEN keyword or ELSE keyword in an IF-THEN-ELSE structure is not followed by an AMS functional command, or does not include a continuation character indicating that a functional command follows on the next line, then a null THEN or ELSE clause is assumed.

SET Command:-
The SET command may be used to set either the LASTCC value or the MAXCC value to a specific value. Frequently the SET command is used to reset the return code(s) to a value of 0 following an expected warning level error condition.

Defining User Catalogs:-
Model syntax for the command:

	DEFINE USERCATALOG

 (NAME(entryname)

 { CYLINDERS(primary[secondary]) |
 RECORDS(primary[secondary]) |
 TRACKS(primary[secondary]) }

 VOLUME(volser)

 [FILE(ddname)]

 [TO(date) | FOR(days)]

 [DATA (
 [CYLINDERS(primary[secondary]) |
 RECORDS(primary[secondary]) |
 TRACKS(primary[secondary])]

 [INDEX (
 [CYLINDERS(primary[secondary]) |
 RECORDS(primary[secondary]) |
 TRACKS(primary[secondary])]

 [CATALOG(mastercatname[/password])]

//
Space Allocation:-
Since a VSAM catalog owns the volume on which it resides, the VSAM catalog must be the first VSAM object stored on a volume. When a VSAM catalog is defined, AMS automatically defines a data space on that volume and then allocates space for the VSAM catalog from within that data space. Separate space allocation sub-parameters can be specified for the index and data components. If space is allocated only to the catalog as a whole, and separate SPACE sub-parameters are not specified for the index and data components, the entire data space (created automatically by AMS) is assigned to the catalog. In this situation, it is then necessary to use a separate AMS function command to define one or more data spaces owned by the catalog in which to create future VSAM objects. If separate index and data component space allocation sub-parameters are coded. The SPACE parameter for the catalog as a whole defines the size of the data space that is created, and the SPACE sub-parameters that are specified for the data and index components determine the portion of the data space that is assigned to the catalog. The remainder of the data space becomes available for other VSAM objects. In most cases, a cylinder of space will be adequate for catalogs.

The difference between the two catalogs created shows how using the SPACE parameter on the optional DATA and INDEX components can be used to define both the catalog and also leave available data space in a single operation. If you look at the catalog listing in the SYSOUT (following the AMS statements defining the user catalog UCMVS801), you can see that under MVS801's data space extent information 13,259 tracks have been allocated to the data space, of which only 30 have been used (to contain the user catalog). Compare this to the listing for MVS802 and you can see that only 15 tracks were allocated for the data space and all 15 have been used for the catalog. Before any VSAM objects can be created on volume MVS802, a separate data space will need to be defined.

Defining Data Space:-
Model syntax for the command:

	DEFINE SPACE
 ({CANDIDATE
 CYLINDERS(primary[secondary]) |
 RECORDS(primary[secondary]) RECORDSIZE(average maximum) |
 TRACKS(primary[secondary])}
 VOLUMES(volser[volser...])
 [FILE(ddname)]))

 [CATALOG(catname[/password])]

	

A data space can be defined implicitly for a new VSAM object by coding the UNIQUE parameter in the DEFINE command for the object. This causes a new data space, of the requested size, to be defined for the sole use of that object. From a data management viewpoint, it is usually better to allocate an entire direct access storage volume as VSAM data space and suballocate space for defined objects from that space. The purpose of the DEFINE SPACE AMS command is to allocate data space and place it under the control of a user catalog.

[image: image5.jpg]= o -
User Catalog § User Catalog, % User Catalog| |2
ucmvseot | 1S ucmvseoz | |$ ucmvoL | @
H H H

= o o

Data Space [\S g Data Space [\2
13,229 tracks| | @ Calalog Datal |3 13,229 tracks| |&
available ; P ; available E
o~ =

Data Space S Data Space 2

13,244 tracks| | @ 13,259 tracks| &

available | /2 available | |2

Data Space

candidate
only

MVS805

VSAM DATA SPACE ALLOCATION USING CATALOGING.
CURRENT APPLICATION DOMAIN
As part of a continual process of product improvement, CICS VSAM Recovery for z/OS, Version 4.2 delivers important new features and enhancements. Support for CICS Transaction Server for z/OS, Version 3.2 New support for IBM CICS Transaction Server for z/OS, Version 3.2 means that CICS VSAM Recovery now supports extended entry sequenced data sets (ESDSs) used by CICS Transaction Server and also provides support in batch through CICS VSAM Recovery batch logging.

Extended ESDSs can also be used in a combined environment, sharing CICS VSAM record-level sharing (RLS) files with batch applications. (This support requires APAR OA19958 for transactional VSAM services [TVS].)

Enhanced backout-failure detection in CICS VSAM Recovery can now operate in a threadsafe mode to complement the file-control threadsafe support in CICS Transaction Server for z/OS, Version 3.2.

Integration with external backup products, including ABARS
Enhanced notification support helps improve control of the VSAM environment by enabling file recovery through the IBM Aggregate Backup and Recovery System (ABARS) function within the DFSMShsm™ and DFSMSdss™ components of z/OS, and IDCAMS REPRO. CICS VSAM Recovery also delivers a new NOTIFY utility for backing up a VSAM sphere created by IBM or non-IBM products. It can then register information about the backup in the recovery-control data set (RCDS) in CICS VSAM Recovery. This feature makes backup information available for the CICS VSAM Recovery ISPF dialog. Keep in mind, though, that you should not use this utility for those backup products that already have implemented CICS VSAM Recovery notification service, DFSMSdss, DFSMShsm and ABARS.

CICS VSAM Recovery for z/OS includes a range of other features to meet your business needs.

• Operations capabilities enable easier day-to-day use, such as initiating backups and assistance with restores that require preallocation of data sets such as IDCAMS REPRO.
• The backup process can be invoked from the CICS VSAM Recovery panel interface, to allow both sharp and fuzzy (if enabled) backups to be created.
• The target data-set can be allocated before it is restored from a backup. This feature supports backups by REPRO (a DFSMS data-set copy utility on the IBM z/OS® platform) and other backup types where restore processing does not include allocating data sets.
• Automated recovery following failure helps reduce data-set downtime.
• Authorization-management capabilities enable you to manage authorization for specific tasks initiated through the panel interface, based on user ID.
• Selective forward recovery enables you to remove specific unwanted changes or eliminate bad data, by choosing or omitting records from the forward-recovery logs that are used as input to your recovery job.
• Change-accumulation processing sorts forward-recovery records into change-accumulation data sets, which can speed up forward recovery if individual VSAM records have been updated many times.
• Commands and disaster-recovery reports enable you to review and validate what is needed at a remote disaster-recovery site.
• The ability to test forward-recovery and backout procedures enables you to test recovery processes without affecting production data.
• The ability to manage log streams with powerful functions helps simplify recovery tasks.
Use the System z tools portfolio:-
CICS VSAM Recovery for z/OS is part of an extensive portfolio of System z tools that can help you to modernize and transform existing CICS and other System z applications whether your goal is to:

• Develop and deploy new workloads to take advantage of the unique performance, availability, security and cost benefits of the System z platform.
• Increase your responsiveness to business requirements by modernizing your mainframe platform.
• Optimize management of your IT environment, helping to reduce cost and complexity while improving governance and compliance
FUTURE PROSPECTS

MVS took a major step forward in fault-tolerance that IBM called 'software recovery'. IBM decided to do this after years of practical real-world experience with MVT in the business world - system failures were now having major impacts on customer businesses and IBM decided to take a major design jump, to assume that despite the very best software development and testing techniques, that 'problems WILL occur'. This profound assumption was pivotal in adding great percentages of fault-tolerance code to the system, but likely contributed to the system's success in tolerating software and hardware failures. Statistical information is hard to come by to prove the value of these design features (how can you measure 'prevented' or 'recovered' problems?), but IBM has, in many dimensions, enhanced these fault-tolerant software recovery and rapid problem resolution features, over time.

Thus, with each and every error: diagnostic data was captured, an attempt was made to perform a repair and keep the system up. The worst thing possible was to take down a user address space (a 'job') in the case of unrepaired errors. Although it was an initial design point, it was not until the most recent MVS version (z/OS), that recovery program was not only guaranteed its own recovery routine, but each recovery routine now has its own recovery routine.

This recovery structure was embedded in the basic MVS control program, and programming facilities are available and used by application program developers and 3rd party developers.

Multiple copies of MVS (or other IBM operating systems) could share the same machine if that machine was controlled by VM/370 - in this case VM/370 was the real operating system and regarded the "guest" operating systems as applications with unusually high privileges. As a result of later hardware enhancements one instance of an operating system (either MVS, or VM with guests, or other) could also occupy a Logical Partition (LPAR) instead of an entire physical system.

Multiple MVS instances can be organized and collectively administered in a structure called a systems complex or sysplex, introduced in September, 1990. Instances interoperate through a software component called a Cross-system Coupling Facility (XCF) and a hardware component called a Hardware Coupling Facility (CF or Integrated Coupling Facility, ICF, if co-located on the same mainframe hardware). Multiple sysplexes can be joined via standard network protocols such as IBM's proprietary Systems Network Architecture (SNA) or, more recently, viaTCP/IP.

The z/OS operating system (MVS' most recent descendant) also has native support to execute POSIX applications.
MVS originally supported 24-bit addressing (i.e. up to 16MB). As the underlying hardware progressed it supported 31-bit (XA and ESA; up to 2048MB) and now (as z/OS) 64-bit addressing. Two of the most significant reasons for the rapid upgrade to 31-bit addressing were: the growth of large transaction-processing networks, mostly controlled by CICS, which ran in a single address space; theDB2 relational database management system needed more than 8MB of application address space in order to run efficiently (early versions were configured into two address spaces which communicated via the shared virtual area, but this imposed a significant overhead since all such communications had to be transmitted via the operating system).

The main user interfaces to MVS are: Job Control Language (JCL), which was originally designed for batch processing but from the 1970s onwards was also used to start and allocate resources to long-running interactive jobs such CICS; and TSO (Time Sharing Option), the interactive time-sharing interface, which was mainly used to run development tools and a few end-user information systems. ISPF is a TSO application for users on 3270-family terminals (and later, on VM as well) which allows the user to accomplish the same tasks as TSO's command line but in a menu and form oriented manner, and with a full screen editor and file browser. TSO's basic interface is command line, although facilities were added later for creating form-driven interfaces).

PERFORMANCE IMPROVISATION
Your system programmer is most likely responsible for tuning the performance of COBOL and VSAM. As an application programmer, you can control the aspects of VSAM that are listed below.

	Table 1. Methods for improving VSAM performance

	Aspect of VSAM
	What you can do
	Rationale and comments

	Invoking access methods service
	Build your alternate indexes in advance, using IDCAMS.
	

	Buffering
	For sequential access, request more data buffers; for random access, request more index buffers. Specify both BUFND and BUFNI when ACCESS IS DYNAMIC.

Avoid coding additional buffers unless your application will run interactively; then code buffers only when response-time problems arise that might be caused by delays in input and output.
	The default is one index (BUFNI) and two data buffers (BUFND).

	Loading records, using access methods services
	Use the access methods service REPRO command when:

· The target indexed data set already contains records.

· The input sequential data set contains records to be updated or inserted into the indexed data set.

If you use a COBOL program to load the file, use OPEN OUTPUT and ACCESS SEQUENTIAL.
	The REPRO command can update an indexed data set as fast or faster than any COBOL program under these conditions.

	File access modes
	For best performance, access records sequentially.
	Dynamic access is less efficient than sequential access, but more efficient than random access. Random access results in increased EXCPs because VSAM must access the index for each request.

	Key design
	Design the key in the records so that the high-order portion is relatively constant and the low-order portion changes often.
	This method compresses the key best.

	Multiple alternate indexes
	Avoid using multiple alternate indexes.
	Updates must be applied through the primary paths and are reflected through multiple alternate paths, perhaps slowing performance.

	Relative file organization
	Use VSAM fixed-length relative data sets rather than VSAM variable-length relative data sets.
	Although not as space efficient, VSAM fixed-length relative data sets are more runtime efficient than VSAM variable-length relative data sets.

	Control interval sizes (CISZ)
	Provide your system programmer with information about the data access and future growth of your VSAM data sets. From this information, your system programmer can determine the best control interval size (CISZ) and FREESPACE size (FSPC).

Choose proper values for CISZ and FSPC to minimize control area (CA) splits. You can diagnose the current number of CA splits by issuing the LISTCAT ALL command on the cluster, and then compress (using EXPORT,IMPORT, or REPRO) the cluster to omit all CA splits periodically.
	VSAM calculates CISZ to best fit the direct-access storage device (DASD) usage algorithm, which might not, however, be efficient for your application.

An average CISZ of 4K is suitable for most applications. A smaller CISZ means faster retrieval for random processing at the expense of inserts (that is, more CISZsplits and therefore more space in the data set). A larger CISZ results in the transfer of more data across the channel for each READ. This is more efficient for sequential processing, similar to a large OS BLKSIZE.

Many control area (CA) splits are unfavorable for VSAM performance. The FREESPACE value can affect CA splits, depending on how the file is used.

REFERENCES
· BASICS OF VSAM & JCL.
Roy & Ranadey.
· VSAM DEMITIFIED.

· MVS introduction by Stern & Stern.

· www.ibmmainframe.com.

· IBM e-books at www.ibm.com.

· http://www.redbooks.ibm.com/redbooks.nsf/RedpieceAbstracts/sg246847.html?Open.

· http://www.redbooks.ibm.com/abstracts/sg247603.html?Open.
· http://www.redbooks.ibm.com/abstracts/sg246989.html?Open.
· http://www.redbooks.ibm.com/redbooks.nsf/RedpieceAbstracts/sg247697.html?Open.
[image: image6.png]

SUBMITTED BY :- UBAID HUSSAIN ZAHIDANI, C/05/517, 8TH SEMESTER.
Page 38

