Note:TEcomp students this is paper solution for the ADA.

 In this solution some problems remain unsolved please tries to solve them.

Department of Computer Science & Engineering / Information Technology

G.H. Raisoni Institute of Engineering and Management, Jalgaon

UNIT 1

1. What is algorithm? What are the characteristics of an algorithm? And explain designing methods of an algorithm with example.
Ans: Algorithm:

In mathematics, computer science, and related subjects, an algorithm is an effective method for solving a problem using a finite sequence of instructions. Algorithms are used for calculation, data processing, and many other fields.

Characteristics of an algorithm
Algorithms should have the following five characteristics:
1.Input: An algorithm must receive some input data supplied externally.
2. Output: An algorithm must produce at least one output as the result
3. Finiteness: no matter what is the input, the algorithm must terminate after a finite number of steps .for ex. procedure which goes on performing a series of steps infinitely is not an algorithm.

4. Definiteness: the steps to be performed in the algorithm must be clear & unambiguous
5.Effectiveness: one must be able to perform the steps in the algorithm without applying any intelligence. For ex. The steps –select three numbers which form a pythogorian triplet-is not effective.
6. Termination: An algorithm must be terminated after its successful completion.
 To under stand these characteristics consider the following problem
Problem: finding the largest value among n>=1 numbers.
Input: the value of n and n numbers
Output: the largest value
Steps:
1. let the value of the first be the largest value denoted by BIG
2. Let R denote the number of remaining numbers. R=n-1
3. If R! = 0 then it is implied that the list is still not exhausted. Therefore look the next number called NEW.
4. Now R becomes R-1
5. If NEW is greater than BIG then replace BIG by the value of NEW
6. Repeat steps 3 to 5 until R becomes zero.
7.Print BIG
8.Stop
End of algorithm.

Designing methods of algorithm are as follows.

1. Divide & conquer method

2. Backtracking

3. Greedy Method

4. Dynamic programming
2. Perform the operation of merge sort in array A= (5, 2, 4, 7, 1, 3, 2, 6) and write algorithm for the same?

Ans: given that
A=(5, 2, 4, 7, 1, 3, 2, 6)
A= ((5, 2, 4, 7, 1, 3, 2, 6))
A= ((5, 2, 4, 7),(1, 3, 2, 6))

A= ((5, 2), (4, 7), (1, 3), (2, 6))
A= ((5), (2), (4), (7), (1), (3), (2), (6))
A= ((2, 5), (4, 7), (1, 3), (2, 6))
A= ((2, 4, 5, 7), (1, 2, 3, 6))

A= ((1, 2, 2, 3, 4, 5, 6, 7))
Algorithm Merge Sort (low,high)

// a[low:high] is a global array to be sorted small[p] is true if there is only one lelment to sort .inthis case list is already sorted

{

If(low<high) then //if there are more than one element

{

//divide p into subproblems

// find where to split the sets

Mid=[(low+high)/2];

//solve the subproblems

Merge sort (low,mid);

Merge sort (mid+1, high);

//combine the solution

Merge sort (low,high,mid);

}

Algorithm Merge (low,mid,high)

//A[low:high] is aglobal array containing two sorted subsets in a[low;mid] and in
A[mid+1;high] the goal is to merge these two sets into a single set residing in a[low:high],b[] is an auxiliary global array

 H=low,i=low,j=mid+1;

While(h<=mid) and (j<=high)do

{ if(a[h]<=a[j]) then

{b[i]=a[h];

H=h+1;

}

Else

{

b[i]=a[j];

j=j+1;

}

i=i+1;

}

If(h>mid) then

For k=j to high do

{

b[i]=a[k];

i=i+1;

}

Else

For k=h to mid do

{

b[i]=a[k];

i=i+1;

}

for k= low to high do

a[k]=b[k];

}
3. Define algorithm? Explain various asymptotic notations used?5
Ans:
In mathematics, computer science, and related subjects, an algorithm is an effective method for solving a problem using a finite sequence of instructions. Algorithms are used for calculation, data processing, and many other fields.

The various Asymptotic notations used are:

1. Big oh(O)
2. Big omega (Ω)
3. Big theta

4. Little oh (o)
5. Little omega (ω)
1. Big oh (O)

The upper bound for function’f’ is provided by Big oh (O).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then O (g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that for some real constant c>0 and some nonnegative integer constant n0, f(n) <= cg(n) for all n>= n0.
For all values of n> n0. Function ‘f’ is atmost c times the function ‘g’.thus ‘g’ provides an upper bound by some constant multiple , on the value of’f’for all suitable large’n’(i.e.n> n0).the set O(g) is usually called as”oh of g or big oh of g”
In general O(g)={f(n):there exist positive constants c and n0. such that 0<=f((n)<=c g(n) for all n ,n> n0 }

2. Big omega (Ω)

The lower bound for function’f’ is provided by Big omega (Ω).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then Ω (g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that for some real constant c>0 and some nonnegative integer constant n0, f(n) >= c g(n) for all n>= n0.

For all values of n< n0. Function ‘f’ is atmost c times the function ‘g’.here ‘g’ provides an lower bound by some constant multiple , on the value of’f’for all suitable large’n’(i.e.n >= n0).

In general Ω (g) = {f (n): there exist positive constants c and n0. such that 0<= c g(n) <=f(n)for all n ,n>= n0 }

3. Big theta (Θ)

The lower bound and upper bound for function’f’ is provided by Big theta(Θ).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then Θ (g)= O (g) ∩ Ω (g), that means, the set of functions that are both in O (g) & Ω (g), the Θ(g) is the set of function’f’ .such that for some positive constants c1and c2and an n0 exists such that c1g(n)<=f(n)<=c2g(n) for all n, n> n0 by “f € Θ(g) ”.we mean “f is order g”.
4. Little oh (o)

The Functions in o(g) are smaller function O(g).
Def: considering ‘g ’to be the set of function from non-negative integers into the positive real no. then o(g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that lim n->∞.f(n) / g(n)=0

5. Little omega (ω)

The Functions in ω (g) are the larger functions of Ω (g).
Def: considering ‘g ’to be the set of function from non-negative integers into the positive real no. then ω (g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that lim n->∞.f (n) / g (n) = ∞.
4. What do you mean by performance analysis of algorithm?5
Ans:
The efficiency of an algorithm can be decided by measuring the performance of an algorithm. We can measure the performance of an algorithm by computing two factors:

1. Amount of time required by an algorithm to execute.

2. Amount of storage required by an algorithm.

Space complexity

The space complexity can be defined as amount of memory required by an algorithm to run. to compute the space complexity we use two factors. Constant & instance characteristics. The space requirement S(p) can be given as:

 S (p) =C+Sp

Where C is a constant i.e. fixed part and it denotes the space of inputs and outputs. this space is amt of space taken by an instruction, variables,& indicators. An Sp is space dependent upon instance characteristics. This is a variable part whose space requirement is depend upon particular program instance

Time Complexity

the time complexity can be defined as amount of time required by an algorithm to run to completion it is difficult to compute the time complexity in the terms of physically clocked time.

For instance in multi-user system, executing time is depending upon many factors such as:

Instruction set used

Number of other programs running

System load

Speed of underlying hardware

 the time complexity is therefore given in terms of frequency count the frequency count is nothing but the count denoting the number of times of execution of statements
Best case ,Worst case ,Average Case Analysis

best, worst and average cases of a given algorithm express what the resource usage is at least, at most and on average, respectively. Usually the resource being considered is running time, but it could also be memory or other resources.

The term best-case performance is used in computer science to describe the way an algorithm behaves under optimal conditions. For example, the best case for a simple linear search on an list occurs when the desired element is the first element of the list. Development and choice of algorithms is rarely based on best-case performance: most academic and commercial enterprises are more interested in improving average performance and worst-case performance.
 Measuring an input size

It is observed that if input size is longer ,then algo.runs usually for longer time hence we can compute the efficiency of efficiency of an algorithm as a function to which input size is passed as parameter sometimes to implement an algo .of input size
Measuring running time
the time which is measured for analyzing an algo. Is reffered to as running time

5.Analyse Insertion sort in detail with its best & worst case.10

Ans:
The basic step in this method is to insert a record R into a sequence of ordered records, R1,R2, ...,Ri, (K1
 INCLUDEPICTURE "mk:@MSITStore:C:\\Documents%20and%20Settings\\prashant.harne\\Desktop\\prs\\ADA\\ADA\\Fundamentals%20of%20Data%20Structures%20-%20Ellis%20Horowitz%20%5bStudentRockStars.com%5d.chm::/IMAGES/lteq12.gif" * MERGEFORMATINET

K2, ..., Ki) in such a way that the resulting sequence of size i + 1 is also ordered. The algorithm below accomplishes this insertion. It assumes the existence of an artificial record Ro with key Ko = - (i.e., all keys are [image: image2]Ko).
procedure INSERT (R,i)

//Insert record R with key K into the ordered sequence Ro, ...,Ri
in such a way that the resulting sequence is also ordered on key

K. We assume that Ro is a record (maybe a dummy) such that

K >= Ko//

j <- i
while K < Kj do
//move Rj one space up as R is to be inserted left of Rj//

Rj+1 <- Rj; j <- j - 1

end
Rj+1 <- R
end INSERT
Again, note that the use of Ro enables us to simplify the while loop, avoiding a test for end of file, i.e., j < 1.

Insertion sort is carried out by beginning with the ordered sequence Ro,R1, and then successively inserting the records R2,R3, ... Rn into the sequence. since each insertion leaves the resultant sequence ordered, the file with n records can be ordered making n - 1 insertions. The details are given in algorithm INSORT on the next page.

Analysis of INSERTION SORT

 In the worst case algorithm INSERT(R,i) makes i + 1 comparisons before making the insertion. Hence the computing time for the insertion is O(i). INSORT invokes procedure INSERT for i = 1,2, ...,n - 1

procedure INSORT(R,n)

//sort the records R1, ...,Rn in nondecreasing value of the key K.

Assume n > 1//

Ko <- -∞ //Create a dummy record Ro such that Ko < Ki,

1 <= i <= n//

for j <- 2 to n do
T <- Rj
call INSERT(T, j - 1) //insert records R2 to Rn//

end
end INSORT
resulting in an overall worst case time of O (n2),

One may also obtain an estimate of the computing time of this method based upon the relative disorder in the input file. We shall say that the record Ri is left out of order (LOO) iff [image: image3]. Clearly, the insertion step has to be carried out only for those records that are LOO. If k is the number of records LOO, then the computing time is O((k + 1)n). The worst case time is still O (n2). One can also show that O(n2) is the average time.

Example: Assume n = 5 and the input sequence is (5,4,3,2,1) [note the records have only one field which also happens to be the key]. Then, after each insertion we have the following:

-[image: image4], 5, 4, 3, 2, 1 [initial sequence]

-[image: image5], 4, 5, 3, 2, 1 i = 2

-[image: image6], 3, 4, 5, 2, 1 i = 3

-[image: image7], 2, 3, 4, 5, 1 i = 4

-[image: image8], 1, 2, 3, 4, 5 i = 5

Note that this is an example of the worst case behavior.

Example: n = 5 and the input sequence is (2, 3, 4, 5, 1). After each execution of INSERT we have:

-[image: image9], 2, 3, 4, 5, 1 [initial]

-[image: image10], 2, 3, 4, 5, l i = 2

-[image: image11], 2, 3, 4, 5, 1 i = 3

-[image: image12], 2. 3, 4, 5, 1 i = 4

-[image: image13], 1, 2, 3, 4, 5 i = 5

In this example only R5 is LOO and the time for each i = 2,3 and 4 is O(1) while for i = 5 it is O(n).

It should be fairly obvious that this method is stable. The fact that the computing time is O(kn) makes this method very desirable in sorting sequences where only a very few records are LOO (i.e., k << n). The simplicity of this scheme makes it about the fastest sorting method for n <=20 - 25 elements, depending upon the implementation and machine properties .

6. Explain the various criteria /specification that all algorithms must satisfy?5
Ans:

Various criteria/specification of an algorithm must satisfy are:
1.Input: An algorithm must receive some input data supplied externally.
2. Output: An algorithm must produce at least one output as the result
3. Finiteness: no matter what is the input, the algorithm must terminate after a finite number of steps .for ex. procedure which goes on performing a series of steps infinitely is not an algorithm.
4. Definiteness: the steps to be performed in the algorithm must be clear & unambiguous
5.Effectiveness: one must be able to perform the steps in the algorithm without applying any intelligence. For ex. The steps –select three numbers which form a pythogorian triplet-is not effective.
6. Termination: An algorithm must be terminated after its successful completion.
7. apply the insertion sort on the list (5,2,4,6,1,3) and calculate its best & worst case & write the algorithm for it?10
Ans:
Given that list= (5, 2, 4, 6, 1, 3)

First iteration (List= (5, 2, 4, 6, 1, 3)

Second iteration (List= (2, 5, 4, 6, 1, 3)

Third iteration (List= (2, 4, 5, 6, 1, 3)

Fourth iteration (List= (1, 2, 4, 5, 6, 3)

Fifth iteration (List= (1, 2, 3, 4, 5, 6)

8. Write note on Asymptotic notation.5

Ans:

In mathematics, computer science, and related subjects, an algorithm is an effective method for solving a problem using a finite sequence of instructions. Algorithms are used for calculation, data processing, and many other fields.

The various asymptotic notations used are:

1. Big oh (O)
2 Big omega (Ω)

3 Big theta

4 Little oh (o)

5 Little omega (ω)

1. Big oh (O)

The upper bound for function ’f’ is provided by Big oh (O).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then O (g) .is set of function ’f’, also from the nonnegative integers to the positive real numbers, such that for some real constant c>0 and some nonnegative integer constant n0, f(n) <= cg(n) for all n>= n0.

For all values of n> n0. Function ‘f’ is atmost c times the function ‘g’. thus ‘g’ provides an upper bound by some constant multiple, on the value of ’f’ for all suitable large’n’(i.e.n> n0).the set O(g) is usually called as ”oh of g or big oh of g”
In general O(g)={f(n):there exist positive constants c and n0. such that 0<=f((n)<=c g(n) for all n ,n> n0 }

2. Big omega (Ω)

The lower bound for function’f’ is provided by big omega (Ω).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then Ω (g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that for some real constant c>0 and some nonnegative integer constant n0, f(n) >= c g(n) for all n>= n0.

For all values of n< n0. Function ‘f’ is atmost c times the function ‘g’.here ‘g’ provides an lower bound by some constant multiple , on the value of’f’for all suitable large’n’(i.e.n >= n0).

In general Ω (g) = {f (n): there exist positive constants c and n0. such that 0<= c g(n) <=f(n)for all n ,n>= n0 }

3. Big theta (Θ)

The lower bound and upper bound for function’f’ is provided by big theta (Θ).notation

Def: considering ‘g ’to be function from non-negative integers into the positive real no. then Θ (g)= O (g) ∩ Ω (g), that means, the set of functions that are both in O (g) & Ω (g), the Θ(g) is the set of function’f’ .such that for some positive constants c1and c2and an n0 exists such that c1g(n)<=f(n)<=c2g(n) for all n, n> n0 by “f € Θ(g) ”.we mean “f is order g”.

4 Little oh (o)

The Functions in o(g) are smaller function O(g).
Def: considering ‘g ’to be the set of function from non-negative integers into the positive real no. then o(g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that lim n->∞.f(n) / g(n)=0

5 Little omega (ω)

The Functions in ω (g) are the larger functions of Ω (g).
Def: considering ‘g ’to be the set of function from non-negative integers into the positive real no. then ω (g) .is set of function’f’, also from the nonnegative integers to the positive real numbers, such that lim n->∞.f (n) / g (n) = ∞.

9. Explain Insertion sort in detail with its best & worst case analysis.10
Ans:
The basic step in this method is to insert a record R into a sequence of ordered records, R1,R2, ...,Ri, (K1 [image: image14]K2, ..., [image: image15]Ki) in such a way that the resulting sequence of size i + 1 is also ordered. The algorithm below accomplishes this insertion. It assumes the existence of an artificial record Ro with key Ko = - (i.e., all keys are [image: image16]Ko).
Procedure INSERT (R,i)

//Insert record R with key K into the ordered sequence Ro, ...,Ri
in such a way that the resulting sequence is also ordered on key

K. We assume that Ro is a record (maybe a dummy) such that

K >= Ko//

j <- i
While K < Kj do
//move Rj one space up as R is to be inserted left of Rj//

Rj+1 <- Rj; j <- j - 1

end
Rj+1 <- R
end INSERT
Again, note that the use of Ro enables us to simplify the while loop, avoiding a test for end of file, i.e., j < 1.

Insertion sort is carried out by beginning with the ordered sequence Ro, R1, and then successively inserting the records R2, R3 ... Rn into the sequence. Since each insertion leaves the resultant sequence ordered, the file with n records can be ordered making n - 1 insertion. The details are given in algorithm INSORT on the next page.

Analysis of INSERTION SORT

 In the worst case algorithm INSERT(R,i) makes i + 1 comparisons before making the insertion. Hence the computing time for the insertion is O(i). INSORT invokes procedure INSERT for i = 1,2, ...,n - 1

Procedure INSORT(R,n)

//sort the records R1, ...,Rn in nondecreasing value of the key K.

Assume n > 1//

Ko <- -∞ //Create a dummy record Ro such that Ko < Ki,

1 <= i <= n//

for j <- 2 to n do
T <- Rj
call INSERT(T, j - 1) //insert records R2 to Rn//

end
end INSORT
Resulting in an overall worst case time of O (n2),

One may also obtain an estimate of the computing time of this method based upon the relative disorder in the input file. We shall say that the record Ri is left out of order (LOO) iff [image: image17]. Clearly, the insertion step has to be carried out only for those records that are LOO. If k is the number of records LOO, then the computing time is O((k + 1)n). The worst case time is still O(n2). One can also show that O(n2) is the average time.

Example: Assume n = 5 and the input sequence is (5,4,3,2,1) [note the records have only one field which also happens to be the key]. Then, after each insertion we have the following:

-[image: image18], 5, 4, 3, 2, 1 [initial sequence]

-[image: image19], 4, 5, 3, 2, 1 i = 2

-[image: image20], 3, 4, 5, 2, 1 i = 3

-[image: image21], 2, 3, 4, 5, 1 i = 4

-[image: image22], 1, 2, 3, 4, 5 i = 5

Note that this is an example of the worst case behavior.

Example: n = 5 and the input sequence is (2, 3, 4, 5, 1). After each execution of INSERT we have:

-[image: image23], 2, 3, 4, 5, 1 [initial]

-[image: image24], 2, 3, 4, 5, l i = 2

-[image: image25], 2, 3, 4, 5, 1 i = 3

-[image: image26], 2. 3, 4, 5, 1 i = 4

-[image: image27], 1, 2, 3, 4, 5 i = 5

In this example only R5 is LOO and the time for each i = 2,3 and 4 is O(1) while for i = 5 it is O(n).

It should be fairly obvious that this method is stable. The fact that the computing time is O(kn) makes this method very desirable in sorting sequences where only a very few records are LOO (i.e., k << n). The simplicity of this scheme makes it about the fastest sorting method for n <=20 - 25 elements, depending upon the implementation and machine properties.
10. Compare & explain the efficiency of insertion & merge sort 5.
Ans: Merge Sort

Efficiency of MERGE sort

Merge sort may be arrived at recursively. In the recursive formulation we divide the file to be sorted into two roughly equal parts called the left and the right subfiles. These subfiles are sorted using the algorithm recursively and then the two subfiles are merged together to obtain the sorted file.

Example: The input file (26, 5, 77, 1, 61, 11, 59, 15, 49, 19) is to be sorted using the recursive formulation of 2-way merge sort. If the subfile from l to u is currently to be sorted then its two subfiles are indexed from l to (l + u)/2 and from (l + u)/2 + 1 to u. The subfile partitioning that takes place is described by the following binary tree. Note that the subfiles being merged are different from those being merged in algorithm MSORT.

From the preceding example, we may draw the following conclusion. If algorithm MERGE is used to merge sorted subfiles from one array into another, then it is necessary to copy subfiles. For example to merge [5, 26] and [77] we would have to copy [77] into the same array as [5, 26]. To avoid this unnecessary copying of subfiles using sequential allocation, we look to a linked list representation for subfiles. This method of representation will permit the recursive version of merge sort to work efficiently.

Each record is assumed to have two fields LINK and KEY. LINK (i) and KEY(i) are the link and key value fields in record i, 1<= i <= n. We assume that initially LINK (i) = 0, 1<= i <=n. Thus each record is initially in a chain containing only itself. Let Q and R be pointers to two chains of records. The records on each chain are assumed linked in nondecreasing order of the key field.
 Let RMERGE(Q,R,P) be an algorithm to merge the two chains Q and R to obtain P which is also linked in nondecreasing order of key values. Then the recursive version of merge sort is given by algorithm RMSORT. To sort the records X1, ...,Xn this algorithm is invoked as call RMSORT(X,1,n,P). P is returned as the start of a chain ordered as described earlier. In case the file is to be physically rearranged into this order then one of the schemes discussed in section 7.8 may be used.

procedure RMSORT(X,l,u,P)

//The file X = (Xl, ...,Xu) is to be sorted on the field KEY. LINK

is a link field in each record and is initially set to 0. The sorted

file is a chain beginning at P//

if l >= u then P <- l
else [mid <-(l + u)/2[image: image28]
call RMSORT(X,l,mid,Q)

call RMSORT(X,mid + 1,u,R)

call RMERGE(Q,R,P)]

end RMSORT
The algorithm RMERGE below uses a dummy record with index d. It is assumed that d is provided externally and that d is not one of the valid indexes of records i.e. d is not one of the numbers 1 through n.

procedure RMERGE(X,Y,Z)

//The linked files X and Y are merged to obtain Z. KEY(i) denotes

the key field and LINK(i) the link field of record i. In X, Y and

Z the records are linked in order of nondecreasing KEY values.

A dummy record with index d is made use of. d is not a valid

index in X or Y//

i <- X; j <-Y; z <-d
while i not equal to 0 and j not equal 0 do
if KEY(i) <= KEY(j) then [LINK(z) <- i
z <- i; i <-LINK (i)]

else [LINK(z) <-j

z <- j; j <- LINK (j)]

End
//move remainder//

if i = 0 then LINK(z) [image: image29] j
else LINK(z) [image: image30] i
Z <- LINK (d)

end RMERGE
One may readily verify that this linked version of 2-way merge sort results in a stable sorting procedure and that the computing time is O (n log n).

Insertion sort
Efficiency of INSERTION SORT

 In the worst case algorithm INSERT(R,i) makes i + 1 comparisons before making the insertion. Hence the computing time for the insertion is O(i). INSORT invokes procedure INSERT for i = 1,2, ...,n - 1

procedure INSORT(R,n)

//sort the records R1, ...,Rn in nondecreasing value of the key K.

Assume n > 1//

Ko <- -∞ //Create a dummy record Ro such that Ko < Ki,

1 <= i <= n//

for j <- 2 to n do
T <- Rj
call INSERT(T, j - 1) //insert records R2 to Rn//

end
end INSORT
resulting in an overall worst case time of O (n2),

One may also obtain an estimate of the computing time of this method based upon the relative disorder in the input file. We shall say that the record Ri is left out of order (LOO) iff [image: image31]. Clearly, the insertion step has to be carried out only for those records that are LOO. If k is the number of records LOO, then the computing time is O((k + 1)n). The worst case time is still O(n2). One can also show that O(n2) is the average time.

Example: Assume n = 5 and the input sequence is (5,4,3,2,1) [note the records have only one field which also happens to be the key]. Then, after each insertion we have the following:

-[image: image32], 5, 4, 3, 2, 1 [initial sequence]

-[image: image33], 4, 5, 3, 2, 1 i = 2

-[image: image34], 3, 4, 5, 2, 1 i = 3

-[image: image35], 2, 3, 4, 5, 1 i = 4

-[image: image36], 1, 2, 3, 4, 5 i = 5

Note that this is an example of the worst case behavior.

Example: n = 5 and the input sequence is (2, 3, 4, 5, 1). After each execution of INSERT we have:

-[image: image37], 2, 3, 4, 5, 1 [initial]

-[image: image38], 2, 3, 4, 5, l i = 2

-[image: image39], 2, 3, 4, 5, 1 i = 3

-[image: image40], 2. 3, 4, 5, 1 i = 4

-[image: image41], 1, 2, 3, 4, 5 i = 5

In this example only R5 is LOO and the time for each i = 2,3 and 4 is O(1) while for i = 5 it is O(n).

It should be fairly obvious that this method is stable. The fact that the computing time is O(kn) makes this method very desirable in sorting sequences where only a very few records are LOO (i.e., k << n). The simplicity of this scheme makes it about the fastest sorting method for n <=20 - 25 elements, depending upon the implementation and machine properties .
UNIT 2
1. Explain the divide & conquer method with suitable example.

Ans:
 (65, 70, 75, 80, 85, 60, 55, 50, 45)

By using the quick sort we perform sorting as follows:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) i p

 65 70 75 80 85 60 55 50 45 +∞ 2 9

 65 45 75 80 85 60 55 50 70 +∞ 3 8

 65 45 50 80 85 60 55 75 70 +∞ 4 7

 65 45 50 55 85 60 80 75 70 +∞ 5 6

 65 45 50 55 60 85 80 75 70 +∞ 6 5

 60 45 50 55 65 85 80 75 70 +∞

2. Use Stassen’s method to compute the matrix product?

| 1 3| |8 4|

| 5 7| |6 2| 10.
Ans: Given: Two N by N matrices A and B.i.e.

A= | 1 3| B= |8 4|

 | 5 7| |6 2|
So Problem: Compute C = A × B by using Stassen’s method
We have,
 [image: image42.png]
[image: image43.png]
First we calculate
Values from

P1= (A11+A22) (B11+B22)

 = (1+7) (8+2)

 =80

P2= (A21+A22) B11
= (5+7)8

=96

P3=A11 (B12-B22)

=1(4-2)

=2

P4=A22 (B21-B11)

=7(6-8)

= -14

P5= (A11+A12) B22
= (1+3)2

=8

P6= (A21-A11) (B11+B12)

= (5-1) (8+4).

=48

P7= (A12-A22) (B21+B22)

= (3-7)(6+2)

= (-4)*8

= -32

C11=P1+P4-P5+P7

=80-14-8-32

=26

C12=P3+P5

=2+8

=10

C21=P2+P4

=96-14

=32

C22=P1+P4-P5+P7

=80+2-96+48

=34

THEREFORE

| C11 C12 | | 26 10 |

 =

| C21 C22 | | 82 34 |

3. Write short note on i) Hiring Problem
Ans: Hiring problem

Suppose that you need to hire a new office assistant. Your previous attempts at hiring have been unsuccessful & you decide to use an employment agency. The employment agency will sent you one candidate each day. you will interview that person & then decide to either hire that person or not.

You must pay the employment agency a small fee to interview the applicant. To actually hire an applicant is more costly, however, since you must fire your current office assistant and pay a large hiring fee to employment agency. You are committed to having, at all times, the best possible person for the job.

The procedure HIRE_ASSISTANT. Given below ,express this strategy for hiring in psuedocode. It assumes that candidates for the office assistant job are numbered 1 through n .the procedure assumes that you are able to , after interviewing candidate I, determine if candidate I is the best candidate you have seen so far. To initalise the procedure creates a dummy candidate ,numbered 0 .who is less qualified than each of the candidates.

HIRE_ASSISTANT (n)

best <- 0 //candidate 0 is least qualified dummy candidate.

for i <- 1 to n

do interview candidate i

If candidate I is better than candidate best.

Then best<- i

Hire candidate i

The cost model for this problem is differs form other model.

Interviewing has a low cost, say ci, where as hiring is expensive costing ck.

Let, m be the no of people hired. Then the total cost associated with this algorithm is

O(n * ci + m * ck)

No matter how many people we hire. We always interview n candidates and thus always incurred the cost n* ci .associated with interviewing .we therefore concentrate on analyzing m*ck, the hiring cost. This quantity varies with each run of algorithm

 ii) Indicator random variable problem
Ans:
An indicator random variable (indicator) is a random variable that maps every outcome to either 0 or 1. The random variable M is an example. If all 3 coins match then M=1 otherwise M=0.

Indicator random variables are closely related to events. In particular an indicator partitions the sample space into those outcomes mapped to 0
For eg. The indicator M partitions the sample space into two blocks as follows:

HHH TTT | HHT HTH HTT THH THT THH
M=0 M=1
In the same way an event partitions the sample space into those outcomes in the event and those outcomes not in the event.therefore each event is associated with a certain indicator random variable & vice versa an indicator for an event E is an indicator random variable i.e 1 for all outcomes in E and) for all outcomes not in E

Thus M is an indicator random variable for the event that all 3 coins match.

Naturally enough , we can talk abt the probability of events defined by equation and in equalities involving random variables.

 for eg.

Pr (M =1) = Pr (TTT) + Pr (HHH)

= 1/8 + 1/8

= 1/4

 As another eg.

Pr(c>=2) =Pr (THH) +Pr (HTH) +Pr (HHT) +Pr (HHH)

= 1/8 + 1/8 + 1/8 + 1/8

= 1/2

This is pretty wild; one normally thinks of equalities & inequalities. As either true /false. But when variables are replaced by random variables there is probability that the relationship holds.
4. Perform the quick sort on the following data, describe all steps?

a. (65, 70, 75, 80, 85, 60, 55, 50, 45)5
Ans: given that

 (65, 70, 75, 80, 85, 60, 55, 50, 45)

By using the quick sort we perform sorting as follows:

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) i p

 65 70 75 80 85 60 55 50 45 +∞ 2 9

 65 45 75 80 85 60 55 50 70 +∞ 3 8

 65 45 50 80 85 60 55 75 70 +∞ 4 7

 65 45 50 55 85 60 80 75 70 +∞ 5 6

 65 45 50 55 60 85 80 75 70 +∞ 6 5

 60 45 50 55 65 85 80 75 70 +∞

5. Write the algorithm for binary search? Explain giving suitable suitable example the number of comparison required? 10.
Ans:
algorithm for binary search:
Algorithm: Bin Search (a, n, x)

//given an array a[1:n] of elements in non decreasing order n>=0

//determine whether x is present, and if so return j such that x=a[j];

//else retunn 0.

{low =1; high=n;

While (low<=high) do

{

 mid= [(low+high)/2];

If (x<a[mid])then

High=mid-1;

Else if (x>a[mid)) then

Low=mid+1;

Else return mid;

}

Return 0;

}

Example:let us select the 14 entries

-15,-6,0,7,9,23,54,82,101,112,125,131,142,151.
Place them in a[1:14], and simulate the steps that Bin Search goes through as it searches for different value of x only the variables low,high,ang mid.need to be traces to simulate algo.we try The following values for x: 151,-14, and 9
For two successful searches and one unsuccessful .following table shows the traces of bin search on these 3 inputs.

1. x =151 low high mid
 1 14 7 54 < 151

 8 14 11 125 <151

 12 14 13 142<151

 14 14 14 found 151
So it requires 4 comparisons.

2. x =-14 low high mid
 1 14 7 54 < -14

 1 6 3 0 <-14

 1 2 1 -15<-14

 2 2 2 -6 >-14
 2 1 not found -14
3. x =9 low high mid

 1 14 7 54 > 9

 1 6 3 0 < 9

 4 6 5 found 9

So it requires 3 comparisons.
6. Explain Indicator random variable problem.5

Ans:

An indicator random variable (indicator) is a random variable that maps every outcome to either 0 or 1. The random variable M is an example. If all 3 coins match then M=1 otherwise M=0.

Indicator random variables are closely related to events. In particular an indicator partitions the sample space into those outcomes mapped to 0

For eg. The indicator M partitions the sample space into two blocks as follows:

HHH TTT | HHT HTH HTT THH THT THH

M=0 M=1

In the same way an event partitions the sample space into those outcomes in the event and those outcomes not in the event.therefore each event is associated with a certain indicator random variable & vice versa an indicator for an event E is an indicator random variable i.e 1 for all outcomes in E and) for all outcomes not in E

Thus M is an indicator random variable for the event that all 3 coins match.

Naturally enough , we can talk abt the probability of events defined by equation and in equalities involving random variables.

 for eg.

Pr (M =1) = Pr (TTT) + Pr (HHH)

= 1/8 + 1/8

= 1/4

 As another eg.

Pr(c>=2) =Pr (THH) +Pr (HTH) +Pr (HHT) +Pr (HHH)

= 1/8 + 1/8 + 1/8 + 1/8

= 1/2

This is pretty wild; one normally thinks of equalities & inequalities. As either true /false. But when variables are replaced by random variables there is probability that the relationship holds.

7. Explain Hiring Problem.5

Ans:
Suppose that you need to hire a new office assistant. Your previous attempts at hiring have been unsuccessful & you decide to use an employment agency. The employment agency will sent you one candidate each day. you will interview that person & then decide to either hire that person or not.

You must pay the employment agency a small fee to interview the applicant. To actually hire an applicant is more costly, however, since you must fire your current office assistant and pay a large hiring fee to employment agency. You are committed to having, at all times, the best possible person for the job.

The procedure HIRE_ASSISTANT. Given below ,express this strategy for hiring in psuedocode. It assumes that candidates for the office assistant job are numbered 1 through n .the procedure assumes that you are able to , after interviewing candidate I, determine if candidate I is the best candidate you have seen so far. To initalise the procedure creates a dummy candidate ,numbered 0 .who is less qualified than each of the candidates.

HIRE_ASSISTANT (n)

best <- 0 //candidate 0 is least qualified dummy candidate.

for i <- 1 to n

do interview candidate i

If candidate I is better than candidate best.

Then best<- i

Hire candidate i

The cost model for this problem is differs form other model.

Interviewing has a low cost, say ci, where as hiring is expensive costing ck.

Let, m be the no of people hired. Then the total cost associated with this algorithm is

O(n * ci + m * ck)

No matter how many people we hire. We always interview n candidates and thus always incurred the cost n* ci .associated with interviewing .we therefore concentrate on analyzing m*ck, the hiring cost. This quantity varies with each run of algorithm
8. Explain Quick sort in detail with its best & worst case analysis.10
Ans:

The quicksort scheme developed by C. A. R. Hoare has the best average behavior among all the sorting methods we shall be studying. In Insertion Sort the key Ki currently controlling the insertion is placed into the right spot with respect to the sorted subfile (R1, ...,Ri - 1). Quicksort differs from insertion sort in that the key Ki controlling the process is placed at the right spot with respect to the whole file. Thus, if key Ki is placed in position s(i), then Kj <=Ks(i) for j < s(i) and Kj >= Ks(i) for j > s(i). Hence after this positioning has been made, the original file is partitioned into two subfiles one consisting of records R1, ...,Rs(i)-1 and the other of records Rs(i)+ 1, ...,Rn. Since in the sorted sequence all records in the first subfile may appear to the left of s(i) and all in the second subfile to the right of s(i), these two subfiles may be sorted independently. The method is best stated recursively as below and where INTERCHANGE (x,y) performs t <- x; x <- y; y <- t.

Procedure QSORT (m,n)

//sort records Rm, ...,Rn into nondecreasing order on key K. Key

Km is arbitrarily chosen as the control key. Pointers i and j are

used to partition the subfile so that at any time Kl <= K, l < i
and Kl >= K, l > j. It is assumed that Km <= Kn+1//

if m < n
then [i <- m; j <- n + 1; K <- Km
loop
repeat i <- i + 1 until Ki >= K;

repeat j <- j - 1 until Kj <= K;

if i < j
then call INTERCHANGE (R(i),R(j))

else exit
forever
call INTERCHANGE (R(m),R(j))

call QSORT (m,j - 1)

call QSORT (j + 1, n)]

end QSORT
Example : The input file has 10 records with keys (26, 5, 37, 1, 61, 11, 59, 15, 48, 19). The table below gives the status of the file at each call of QSORT. Square brackets are used to demarcate subfiles yet to be sorted.

 R1 R2 R3 R4 R5 R6 R7 R8 R9 Rl0
m
 n

[26 5 37 1 61 11 59 15 48 19] 1 10

[11 5 19 1 15] 26 [59 61 48 37] 1 5

[1 5] 11 [19 15] 26 [59 61 48 37] 1 2

 1 5 11 [19 15] 26 [59 61 48 37] 4 5

 1 5 11 15 19 26 [59 61 48 37] 7 10

 1 5 11 15 19 26 [48 37] 59 [61] 7 8

 1 5 11 15 19 26 37 48 59 [61] 10 10

 1 5 11 l5 l9 26 37 48 59 6l

Analysis of Quicksort

The worst case behavior of this algorithm is O(n2). However, if we are lucky then each time a record is correctly positioned, the subfile to its left will be of the same size as that to its right. This would leave us with the sorting of two subfiles each of size roughly n/2. The time required to position a record in a file of size n is O(n). If T(n) is the time taken to sort a file of n records, then when the file splits roughly into two equal parts each time a record is positioned correctly we have

T(n) [image: image44] cn + 2T(n/2) , for some constant c
[image: image45] cn + 2(cn/2 + 2T(n/4))

[image: image46] 2cn + 4T(n/4)

:

[image: image47] cn log2n + nT(1) = O(n log2 n)

In our presentation of QSORT, the record whose position was being fixed with respect to the subfile currently being sorted was always chosen to be the first record in that subfile
Unlike Insertion Sort where the only additional space needed was for one record, Quicksort needs stack space to implement the recursion. In case the files split evenly as in the above analysis, the maximum recursion depth would be log n requiring a stack space of O(log n). The worst case occurs when the file is split into a left subfile of size n - 1 and a right subfile of size 0 at each level of recursion. In this case, the depth of recursion becomes n requiring stack space of O(n). The worst case stack space can be reduced by a factor of 4 by realizing that right subfiles of size less than 2 need not be stacked. An asymptotic reduction in stack space can be achieved by sorting smaller subfiles first. In this case the additional stack space is at most O(log n).

9. Explain Binary search Algorithm with its best & worst case.10

Ans:

algorithm for binary search:

Algorithm: Bin Search (a, n, x)

//given an array a[1:n] of elements in non decreasing order n>=0

//determine whether x is present ,and if so return j such that x=a[j];

//else retunn 0.

{low =1; high=n;

While (low<=high) do

{

 mid= [(low+high)/2];

If (x<a[mid])then

High=mid-1;

Else if (x>a[mid)) then

Low=mid+1;

Else return mid;

}

Return 0;

}

10.consider the list of elements (8,1,6,4,0,3,9,5) perform the quick sort , calculate its time complexity for balanced and unbalanced partition . Write the algorithm for it.6
UNIT 3

1. write a note on i)Hamilton Cycle problem
Ans:
Hamilton Cycle Problem

Given a graph G=(V,E) ,we have to find the Hamilton cycle .using backtracking approach.
We start our search from any arbitrary vertex say A. this vertex A becomes the root of implicit tree the first element of our partial solution ids the first intermediate vertex of the Hamilton cycle that is to be constructed.

The next adjacent vertex is selected on the basis of alphabetical /numerical order if at any stage an arbitrary vertex say X .makes the cycle with any vertex other than A. then we say that dead end is reached in this case we backtrack one step and again the search begins by selecting another vertex.

It should be noted that, after backtracking the elements from the partial solution must be removed the search using backtracking is successful if Hamilton cycle is obtained.

For eg. Consider a graph g=(v,e) in the following fig. we have to find a Hamilton cycle using backtracking.

[image: image48]
Step1:

Initially we start our search with vertex A this vertex A becomes the root of our implicit tree.

[image: image49](Root
Step2:

Next we choose vertex B adjacent to A as it comes first in lexographical order (B, C, D)

[image: image50]
Step 3:
Next vertex C is selected which is adjacent to Band which comes first in lexographical order(C, E)

[image: image51]
Step 4:

Next vertex D is selected which is adjacent to C and which comes first in lexographical order(D, E)

[image: image52]
 Step 5:

Next vertex E is selected which is adjacent to D if we choose vertex A then we don’t get Hamilton Cycle.

 The vertex adjacent to E are B, C, D but they already visited thus we get the dead end so we backtrack one step and removes the vertex E from the partial solution.

[image: image53]
The vertex D adjacent to E, C, A from which vertex E has already checked & we left with vertex A but by choosing this vertex we don’t get Hamilton cycle so again we backtrack one step.

Here we select the vertex E adjacent to C.

[image: image54]<= Dead End
The vertexes adjacent to E are B, C, and D so vertex D is selected.

[image: image55]
The vertexes adjacent to D are A, C, E so a vertex A is selected. Here we get the Hamilton cycle as all the vertex other than the start vertex A is visited only once A-B-C-E-D-A.

[image: image56]<= Solution

ii) Graph coloring

Ans:

Graph Coloring

Graph coloring is the problem of coloring each vertex in a graph in asuch way that no two adjacent vertices have same color and yet M-colors are used .this problem is also called as M coloring problem if the degree of a given graph is d then we can color it with d+1 colors.(here the degree in a graph G defined for avertex .it is the total no of edges incident with vi .it is noted that the self loops on a given vertex is counted twice An edge having the same vertex as both its end vertices is called self loop)

As given in the following fig. we require 3 colors to color the graph. Hence the chromatic number of given graph is 3.

[image: image57]
We can use the backtracking technique to solve the graph coloring problem as follows
Step1: A graph G consists of vertices from 1 to 6 there are 3 colors used i.e. R, G, and B.

[image: image58]
Step 2: a)

[image: image59]
b)

[image: image60]
c)

[image: image61]
d)

[image: image62]
e)

[image: image63]
f)

[image: image64]
Stuck here!!! We can’t assign R, G, B hence backtrack.

Step 3: thus, the graph coloring problem is solved.

[image: image65]
 The state space tree can be drawn for better understanding of graph coloring technique using backtracking approach.

[image: image66]
2. Explain four queen problem in detail also give the procedure for four queen problem.
Ans:

Given a 4*4 chessboard, now let us number the rows &columns of the chess board 1 through 4 see following fig.
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Initially we have an empty chessboard, now first we place queen Q1 in the very first acceptable position which is row 1& column 1(1,1). Next we place queen Q2 and search for its best position so that both these two queens don’t attack each other thus, if we place Q2 in column 1&2 then the dead end is encountered .thus the first acceptable position for Q2is (2,3) but later this position proves to be dead end as no position is left for placing queen Q3 safely so we backtrack one step and place the queen Q2 in(2,4). The next possible position for it. After this all other queens are placed safely by moving Q2 to (2, 4) ,Q3 to (3,1) andQ4 to(4,3).in a such a manner that no two queens can attack each other by being placed in the same row ,column or diagonal each node describes its partial solution the whole procedure is shown in fig.
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Q1
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	Q1
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	Q1
	
	
	

	
	
	Q2
	

	
	
	
	

	
	
	
	

	Q1
	
	
	

	
	
	
	Q2

	
	
	
	

	
	
	
	

	
	Q1
	
	

	
	
	
	Q2

	
	
	
	

	
	
	
	

	Q1
	
	
	

	
	
	
	Q2

	
	Q3
	
	

	
	
	
	

	
	Q1
	
	

	
	
	
	Q2

	Q3
	
	
	

	
	
	
	

	
	Q1
	
	

	
	
	
	Q2

	Q3
	
	
	

	
	
	Q4
	

3. Define back-tracking, explain with suitable example?

Ans:Backtracking

Backtracking is applicable to the wide range of problems and is a simple method .the key point for the backtracking is binary choice that means yes or no whenever the backtracking have choice no that means the algorithm has encountered a dead end & it backtracks one step and tries a different path for choice

 The backtracking likes a DFS tree in a directed graph, where a graph is either a tree or at least it doesn’t have any cycle.

The search is successful ,if a complete solution for the problem is defined in this case the search either terminates/ continues to search for all other solution if at any stage the search is unsuccessful that means the partial solution constructed so far are unable to define the complete solution then the search backtracks 1 step just like DFS.

It should be noted that the element from the partial solution is also removed on backtracking the search for a complete solution resumes when search backtracks to node with one or more unexplored neighbors.

For eg.Knapsack problem

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most useful items.
The problem often arises in resource allocation with financial constraints. A similar problem also appears in combinatory, complexity theory, cryptography and applied mathematics.

Definition
In the following, we have n kinds of items, 1 through n. Each kind of item j has a value pj and a weight wj. We usually assume that all values and weights are nonnegative. The maximum weight that we can carry in the bag is W.

The most common formulation of the problem is the 0-1 knapsack problem, which restricts the number xj of copies of each kind of item to zero or one. Mathematically the 0-1-knapsack problem can be formulated as:

· maximize [image: image68.png]
· subject to [image: image69.png]
The bounded knapsack problem restricts the number xj of copies of each kind of item to a maximum integer value bj. Mathematically the bounded knapsack problem can be formulated as:

· maximize [image: image70.png]
· subject to [image: image71.png]
The unbounded knapsack problem places no upper bound on the number of copies of each kind of item.

Of particular interest is the special case of the problem with these properties:

· it is a decision problem,

· it is a 0-1 problem,

· for each kind of item, the weight equals the value: wj = pj.

Notice that in this special case, the problem is equivalent to this: given a set of nonnegative integers, does any subset of it add up to exactly W? Or, if negative weights are allowed and W is chosen to be zero, the problem is: given a set of integers, does any subset add up to exactly 0? This special case is called the subset sum problem. In the field of cryptography the term knapsack problem is often used to refer specifically to the subset sum problem.
4. solve the following knapsack problem, draw the tree.(p1,p2,p3,p4)=(40,30,50,10)
 (w1, w2, w3, w4)= (2, 5, 10, 5) where n= 4, w=16.

Ans :

In this example w=16 is wrong .when we try to draw a tree for w= 16 it is noticeable that we could not get the solution. As below: hence we will take w=15 because I it is nearest value to the w=16

[image: image72]
5. Which is the last solution for the 5queen problem found by the backtracking algorithm? Use the board’s symmetry to find at least 4 other solution to the problem.

6. consider the traveling sales person instance defined by the cost matrix

 | ∞ 7 3 12 8 |

 | 3 ∞ 6 14 9 |

 | 5 8 ∞ 6 18 |
 | 9 3 5 ∞ 11 |

 |18 14 9 8 ∞ |

 Obtain the reduce cost matrix and state space tree that will be generated by LCBB label each node by the value.

7. Write an algorithm for finding m-coloring graph? Draw a 4 node graph & all possible 3- Coloring.
Ans:

In this graph,
d=2

therefore chromatic no is i.e.

M = d+1

 2+1

 =3

So the implicit tree for this graph is as follow:

[image: image73]
8. Consider the traveling sales person instance defined by the cost matrix

 | ∞ 20 30 10 11 |

 | 15 ∞ 16 4 2 |

 | 3 5 ∞ 2 4 |

 | 19 6 18 ∞ 3 |

 |16 4 7 16 ∞ |

 Obtain the reduce cost matrix and state space tree that will be generated by LCBB label each node by the value.

9. Define back-tracking, state & explain the applications of it? 5

Ans: Backtracking is applicable to the wide range of problems and is a simple method .the key point for the backtracking is binary choice that means yes or no whenever the backtracking have choice no that means the algorithm has encountered a dead end & it backtracks one step and tries a different path for choice .

 The backtracking likes a DFS tree in a directed graph, where a graph is either a tree or at least it doesn’t have any cycle.

The search is successful ,if a complete solution for the problem is defined in this case the search either terminates/ continues to search for all other solution if at any stage the search is unsuccessful that means the partial solution constructed so far are unable to define the complete solution then the search backtracks 1 step just like DFS.

It should be noted that the element from the partial solution is also removed on backtracking the search for a complete solution resumes when search backtracks to node with one or more unexplored neighbors.

Applications of backtracking are:
1. N-queen problem

2. Knapsack problem

3. Graph coloring problem

4. Hamilton cycle Problem

5. Maze problem
 explain any application given above.

10. Define Hamilton Cycle& write algorithm for it? 5

Ans:

Hamilton Cycle Problem

Given a graph G=(V,E) ,we have to find the Hamilton cycle .using backtracking approach.

We start our search from any arbitrary vertex say A. this vertex A becomes the root of implicit tree the first element of our partial solution ids the first intermediate vertex of the Hamilton cycle that is to be constructed.

The next adjacent vertex is selected on the basis of alphabetical /numerical order if at any stage an arbitrary vertex say X .makes the cycle with any vertex other than A. then we say that dead end is reached in this case we backtrack one step and again the search begins by selecting another vertex.

It should be noted that, after backtracking the elements from the partial solution must be removed the search using backtracking is successful if Hamilton cycle is obtained.

For eg. Consider a graph g=(v,e) in the following fig. we have to find a Hamilton cycle using backtracking.

[image: image74]
Step1:

Initially we start our search with vertex A this vertex A becomes the root of our implicit tree.

[image: image75](Root

Step2:

Next we choose vertex B adjacent to A as it comes first in lexographical order (B, C, D)

[image: image76]
Step 3:

Next vertex C is selected which is adjacent to Band which comes first in lexographical order(C, E)

[image: image77]
Step 4:

Next vertex D is selected which is adjacent to C and which comes first in lexographical order(D, E)

[image: image78]
 Step 5:

Next vertex E is selected which is adjacent to D if we choose vertex A then we don’t get Hamilton Cycle.

 The vertex adjacent to E are B, C, D but they already visited thus we get the dead end so we backtrack one step and removes the vertex E from the partial solution.

[image: image79]
The vertex D adjacent to E, C, A from which vertex E has already checked & we left with vertex A but by choosing this vertex we don’t get Hamilton cycle so again we backtrack one step.

Here we select the vertex E adjacent to C.

[image: image80]<= Dead End

The vertexes adjacent to E are B, C, and D so vertex D is selected.

[image: image81]
The vertexes adjacent to D are A, C, E so a vertex A is selected. Here we get the Hamilton cycle as all the vertex other than the start vertex A is visited only once A-B-C-E-D-A.

[image: image82]
11. Explain 8-queen as an example of backtracking?5.

12. Explain lower bound theory for comparison tree sorting &searching?5.
UNIT 4
1. Explain how job-sequencing with deadlines can be solved using greedy approach?

Ans:

 Considering that there are n jobs that are to be executed. At any time t=1, 2, 3…n. only exactly 1 job is executed. The profits pi are given. These profits are gained by corresponding job. For obtaining the feasible solution we should take care that the jobs get completed within the given deadline.
An optimal solution is feasible solution with maximum profit.

For Eg. Let n=4 , profits(p1,p2,p3,p4)=(100,10,15,27) and deadlines(d1,d2,d3,d4)=(2,1,2,1)

Feasible solution processing Sequence profit

(1,2)
2-1 110

(1,3) 1-3 / 3-1 115

(1,4) 4-1 127

(2,3) 2-3 25

(2,4) 2-4 / 4-2 37

(3,4) 4-3 42

(1) 1 100

(2) 2 10

(3) 3 15

(4) 4 27

Optimal solution is 4-1 because it gives maximum profit 127.
2. Compare the dynamic Programming with divide and conquer and greedy method.5
Ans:
	Sr.No.
	Divide & conquer method
	Dynamic programming

	1.
	The problem is divided into small subproblems.these sub problems are solved independently. Finally all the solution of the problems are collected together to get the solution to the given problem.
	in Dynamic programming many decision sequences are generated and all the overlapping sub instances are considered.

	2.
	In these method duplications in the sub solutions are neglected i.e. duplicate sub solutions may be obtained.
	In Dynamic programming duplications in solutions is totally avoided.

	3.
	This method is less efficient because rework on solutions.
	Dynamic programming is efficient than divide & conquer strategy.

	4.
	This method uses top down approach of problem solving.
	Dynamic programming uses top down & bottom up approach of problem solving.

	5.

	Divide & conquer splits its input at specific deterministic points usually in the middle.
	Dynamic programming splits its input at every possible split points rather than at a particular point. After trying all split points it determines which split point is optimal.

	Sr.No.
	Greedy Method
	Dynamic programming

	1.
	Greedy method is used for obtaining optimum solution.
	Dynamic programming is also used for obtaining optimum solution.

	2.
	In greedy method set of feasible solutions and picks up the optimum solution.
	There is no special set of feasible solutions in this method.

	3.
	In greedy method the optimum selection is without revising previously generated solutions.
	Dynamic programming considers all possible sequences in order to obtain the optimum solution.

	4.
	In greedy method there is no as such guarantee of getting optimum solution
	It is guaranteed that the Dynamic programming will generate optimal solution using principle of optimality.

3. Consider the following instance of knapsack problem let n=3,m=20 (p1,p2,p3)=(25,24,15) and (w1,w2,w3)=(18,15,10).5

Ans:

4. Consider the problem of job sequencing with deadlines there are n jobs & associated with every job a deadline is specified. The profit is earned iff the job is completed by its deadline. Devise a greedy algorithm to solve this problem. 10

Ans:

 Considering that there are n jobs that are to be executed. At any time t=1, 2, 3…n. only exactly 1 job is executed. The profits pi are given. These profits are gained by corresponding job. For obtaining the feasible solution we should take care that the jobs get completed within the given deadline
Devising the algorithm for above problem is as given below:

Algorithm Job_seq (D,j , n)
{

// D[i] denotes the ith deadline where 1<= i<=n

// j [i] denotes the ith job

//D[j[i]]<= D[j[i+1]]

// initially D [0] <- 0;

j [0] <- 0;

j [1] <- 1;

Count <- 1:

For<-2to n do

{

t<- count;

While (D [j[t]]>D[i]) AND (D [j[t]]! =t)) do t<-t-1;
if(D [j[t]]<= D[i]) AND (D [i]>t)) then

{

//insertion of ith feasible sequence into j array.
For s<-count to(t+1) step-1 do

j[s+1]<-j[s];

j[t+1] <-I;

count <-count+1;

}//end of if .

}//end of while.

return count;

}

The sequence of j will be inserted if and only if D [j[t]]! =t.this also mean that the job j wiil be processed if it is in within the deadline. The computing time taken by the above algorithm O (n2), because the basic operation of computing sequence in array j is within two nested for loops
5. Find a minimum cost path from the following multi stage graph using forward & backward Approach 10.

 4 6
 2
 9 1 2 5 4
S 7 7 4 3 2

 T T
 3
 2 11 5 5 T

 11 6
 8
Ans:

Multistage graph using Forward Approach

 this is a 5 stage graph i.e. there are 5 stages v i for 1<=i<=k.
K=5 also s=1 t =12

Stage 4:

For stage 4, compute cost (4, j) using c (j, t) for all vertices j € v4.

V4= {9, 10, 11}

Cost (4, 9) = c (9, t) = (9, 12) = 4.

Cost (4, 10) = c (10, t) = (10, 12) = 2.

Cost (4, 11) = c (11, t) = (11, 12) = 5.

Stage 3:

For stage 3, compute cost (3, j) using c (j, m) for all vertices j € v3 and

m € v4.
V3= {6, 7, 8}

Cost(3,6) = min[c(6,9)+cost(4,9),c(6,10)+cost(4,10)]

= min [6+4, 5+2]

= min [10, 7]

= 7
Because vertex 10 minimizes cost(3,6) we write
D(3,6)=10

Cost(3,7) = min[c(7,9)+cost(4,9),c(7,10)+cost(4,10)]

= min [4+4, 3+2]

= min [8, 5]

= 5

Because vertex 10 minimizes cost(3,7) we write

D(3,7)=10

Cost(3,8) = min[c(8,10)+cost(4,10),c(8,11)+cost(4,11)]

= min [5+2, 6+5]

= min [7, 11]

= 7

Because vertex 10 minimizes cost (3,8) we write

D(3,8)=10

Stage 2:

For stage 2, compute cost (2, j) using c (j, m) for all vertices j € v2 and

m € v3.

V2= {2, 3, 4, 5}

Cost(2,2) = min[c(2,6)+cost(3,6),c(2,7)+cost(3,7), c(2,8)+cost(3,8)]

= min [4+7, 2+5,1+7]

= min [11, 7, 8]

= 7

Because vertex 7 minimizes cost(2,2) we write

D(2,2)=7
Cost(2,3) = min[c(3,6)+cost(3,6),c(3,7)+cost(3,7)]

= min [2+7, 7+5]

= min [9, 12]

= 9
Because vertex 6 minimizes cost(2,3) we write

D(2,3)=6
Cost(2,4) = min[c(4,8)+cost(3,8)]

= min [11+7]

= 18
Because vertex 8 minimizes cost (2,4) we write

D(2,4)=8
Cost(2,5) = min[c(5,7)+cost(3,7),c(5,8)+cost(3,8)]

= min [11+5, 8+7]

= min [16, 15]

= 15

Because vertex 8 minimizes cost (2, 5) we write

D(2,3)=8

Stage 1:

For stage 1, compute cost (1, 1) using c (1,j) for all vertices j € v2

Cost(1,1) = min[c(1,2)+cost(2,2),c(1,3)+cost(2,3), c(1,4)+cost(2,4), c(1,5)+cost(2,5)]

= min [9+7,7+9,3+18,2+15]

= min [16, 16, 21, 17]

= 16
Because vertex 2 minimizes cost (1,1) we write

D(1,1)=2
Hence the minimum cost of path from S to T has a cost 16. Observed that the cost of values computed in stage 4 are used in stage 3 & there fore recomputation is avoided.
Let us determine the minimum cost path let S, V2, V3, V4, and T.is minimum cost path

V2 = D (1, 1) = 2
V3 = D (2, v2) =D (2, 2) = 7
V4 = D (3, v3) =D (3, 7) = 10

Therefore path from S to T is 1-2-7-10-12
Multistage graph using Backward Approach

this is a 5 stage graph i.e. there are 5 stages v i for 1<=i<=k.

K=5 also s=1 t =12 .

Stage 2:

For stage 2, compute bcost (2, j) using c (1,j) for all vertices j € v2

V2= {2, 3, 4, 5}

bCost(2,2) = c(1,2)=9

bCost(2,3) = c(1,3)=7

bCost(2,4) = c(1,4)=3

bCost(2,5) = c(1,5)=2

Stage 3:

For stage 3, compute bcost (3, j) using c (m,j) for all vertices j € v3 and

m € v2.

V3= {6, 7, 8}

bCost(3,6) = min[bcost(2,2)+c (2,6),bcost(2,3)+c(3,6)]

= min [9+4, 7+2]

= min [13, 9]

= 9
Because vertex 3 minimizes bcost(3,6) we write

D(3,6)=3
bCost(3,7) = min[bcost(2,3)+c (3,7),bcost(2,5)+c(5,7)]

= min [7+7,2+11]

= min [14, 13]

= 13

Because vertex 5 minimizes bcost(3,7) we write

D(3,7)=5
bCost(3,8) = min[bcost(2,4)+c (4,8),bcost(2,5)+c(5,8)]

= min [3+11,2+8]

= min [14, 10]

= 10

Because vertex 5 minimizes bcost(3,8) we write

D(3,8)=5

Stage 4:

For stage 4, compute bcost (4, j) using c (m,j) for all vertices j € v4 and

m € v3.

V4= {9, 10, 11}

bCost(4,9) = min[bcost(3,6)+c (6,9),bcost(3,7)+c(7,9)]

= min [9+6, 13+4]

= min [15, 17]

= 15

Because vertex 6 minimizes bcost (4, 9) we write

D(4,9)=6

bCost(4,10) = min[bcost(3,6)+c (6,10),bcost(3,7)+c(7,10), bcost(3,8)+c (8,10)]

= min [9+5, 13+3, 10+5]

= min [14, 16, 15,]

= 14

Because vertex 6 minimizes bcost (4, 10) we write

D(4,10)=6

bCost(4,11) = min[bcost(3,8)+c (8,11)]
= min [10+6]

= 16
Because vertex 8 minimizes bcost (4, 11) we write

D(4,11)=8
Stage 5:

For stage 4, compute bcost (5, t) using c (m,t) for m € v4.

T=12

bCost(5,12) = min[bcost(4,9)+c (9,12),bcost(4,10)+c(10,12), bcost(4,11)+c(11,12)]

= min [15+4, 14+2, 16+5]

= min [19, 16, 21]

= 16

Because vertex 10 minimizes bcost (5, 12) we write

D(5,12)=10

Hence the minimum cost of path from S to T has a cost 16. Observed that the cost of values computed in stage 2 are used in stage 3 & there fore recomputation is avoided.

Let us determine the minimum cost path let S, V2, V3, V4, and T.is minimum cost path

V4 = D (5, 12) = 10

V3 = D (4, v4) =D (4, 10) = 6
V2 = D (3, v3) =D (3, 6) = 3

Therefore path from S to T is 1-3-6-10-12
6. Write short note on: i)Dynamic Programming

 ii) Greedy Approach .10

Ans:

i)Dynamic Programming

In computer science, dynamic programming is a method of solving complex problems by breaking them down into simpler steps. It is applicable to problems that exhibit the properties of overlapping sub problems which are only slightly smaller and optimal substructure (described below). When applicable, the method takes much less time than naive methods.

Top-down dynamic programming simply means storing the results of certain calculations, which are then re-used later because the same calculation is a sub-problem in a larger calculation. Bottom-up dynamic programming involves formulating a complex calculation as a recursive series of simpler calculations.

Dynamic programming in computer programming
There are two key attributes that a problem must have in order for dynamic programming to be applicable: optimal substructure and overlapping subproblems which are only slightly smaller. When the overlapping problems are, say, half the size of the original problem the strategy is called "divide and conquer" rather than "dynamic programming". This is why merge sort, and quick sort, and finding all matches of a regular expression are not classified as dynamic programming problems.

Optimal substructure means that the solution to a given optimization problem can be obtained by the combination of optimal solutions to its sub problems. Consequently, the first step towards devising a dynamic programming solution is to check whether the problem exhibits such optimal substructure. Such optimal substructures are usually described by means of recursion. For example, given a graph G=(V,E), the shortest path p from a vertex u to a vertex v exhibits optimal substructure: take any intermediate vertex w on this shortest path p. If p is truly the shortest path, then the path p1 from u to w and p2 from w to v are indeed the shortest paths between the corresponding vertices (by the simple cut-and-paste argument described in CLRS). Hence, one can easily formulate the solution for finding shortest paths in a recursive manner, which is what the Bellman-Ford algorithm does.

Overlapping sub problems means that the space of sub problems must be small, that is, any recursive algorithm solving the problem should solve the same sub problems over and over, rather than generating new sub problems. For example, consider the recursive formulation for generating the Fibonacci series: Fi = Fi-1 + Fi-2, with base case F1=F2=1. Then F43 = F42 + F41, and F42 = F41 + F40. Now F41 is being solved in the recursive sub trees of both F43 as well as F42. Even though the total number of sub problems is actually small (only 43 of them), we end up solving the same problems over and over if we adopt a naive recursive solution such as this. Dynamic programming takes account of this fact and solves each sub problem only once. Note that the sub problems must be only 'slightly' smaller (typically taken to mean a constant additive factor) than the larger problem; when they are a multiplicative factor smaller the problem is no longer classified as dynamic programming (otherwise merge sort and quick sort would be dynamic programming problems).

Figure shows The sub problem graph for the Fibonacci sequence. The fact that it is not a tree indicates overlapping sub problems.

This can be achieved in either of two ways:
 Top-down approach: This is the direct fall-out of the recursive formulation of any problem. If the solution to any problem can be formulated recursively using the solution to its sub problems, and if its sub problems are overlapping, then one can easily memorize or store the solutions to the sub problems in a table. Whenever we attempt to solve a new sub problem, we first check the table to see if it is already solved. If a solution has been recorded, we can use it directly, otherwise we solve the sub problem and add its solution to the table.

Bottom-up approach: This is the more interesting case. Once we formulate the solution to a problem recursively as in terms of its sub problems, we can try reformulating the problem in a bottom-up fashion: try solving the sub problems first and use their solutions to build-on and arrive at solutions to bigger sub problems. This is also usually done in a tabular form by iteratively generating solutions to bigger and bigger sub problems by using the solutions to small sub problems. For example, if we already know the values of F41 and F40, we can directly calculate the value of F42.

Some programming languages can automatically memorize the result of a function call with a particular set of arguments, in order to speed up call-by-name evaluation (this mechanism is referred to as call-by-need). Some languages make it possible portably (e.g. Scheme, Common Lisp or Perl), some need special extensions (e.g. C++, see [6]). Some languages have automatic memorization built in such as tabled Prolog. In any case, this is only possible for a referentially transparent function.
Here is an overview of the method:
1. Define a small part of the whole problem and find an optimum solution to this small part.

2. Enlarge this small part slightly and find the optimum solution to the new problem using the previously found optimum solution.

3. Continue with Step 2 until you have enlarged sufficiently that the current problem encompasses the original problem. When this problem is solved, the stopping conditions will have been met.

4. Track back the solution to the whole problem from the optimum solutions to the small problems solved along the way.

ii) Greedy Approach .10

Ans: A greedy approach is any algorithm that follows the problem solving metaheuristic of making the locally optimal choice at each stage[1] with the hope of finding the global optimum.

For example, applying the greedy strategy to the traveling salesman problem yields the following algorithm: "At each stage visit the unvisited city nearest to the current city".

In general, greedy algorithms have five pillars:

1. A candidate set, from which a solution is created

2. A selection function, which chooses the best candidate to be added to the solution

3. A feasibility function, that is used to determine if a candidate can be used to contribute to a solution

4. An objective function, which assigns a value to a solution, or a partial solution, and

5. A solution function, which will indicate when we have discovered a complete solution

Greedy algorithms produce good solutions on some mathematical problems, but not on others. Most problems for which they work well have two properties:

Greedy choice property

We can make whatever choice seems best at the moment and then solve the sub problems that arise later. The choice made by a greedy algorithm may depend on choices made so far but not on future choices or all the solutions to the sub problem. It iteratively makes one greedy choice after another, reducing each given problem into a smaller one. In other words, a greedy algorithm never reconsiders its choices. This is the main difference from dynamic programming, which is exhaustive and is guaranteed to find the solution. After every stage, dynamic programming makes decisions based on all the decisions made in the previous stage, and may reconsider the previous stage's algorithmic path to solution.

Types
Greedy algorithms can be characterized as being 'short sighted', and as 'non-recoverable'. They are ideal only for problems which have 'optimal substructure'. Despite this, greedy algorithms are best suited for simple problems (e.g. giving change). It is important, however, to note that the greedy algorithm can be used as a selection algorithm to prioritize options within a search, or branch and bound algorithm. There are a few variations to the greedy algorithm:

· Pure greedy algorithms

· Orthogonal greedy algorithms

· Relaxed greedy algorithms

Applications
Greedy algorithms mostly (but not always) fail to find the globally optimal solution, because they usually do not operate exhaustively on all the data. They can make commitments to certain choices too early which prevent them from finding the best overall solution later. For example, all known greedy coloring algorithms for the graph coloring problem and all other NP-complete problems do not consistently find optimum solutions. Nevertheless, they are useful because they are quick to think up and often give good approximations to the optimum.

If a greedy algorithm can be proven to yield the global optimum for a given problem class, it typically becomes the method of choice because it is faster than other optimization methods like dynamic programming. Examples of such greedy algorithms are Kruskal's algorithm and Prim's algorithm for finding minimum spanning trees, Dijkstra's algorithm for finding single-source shortest paths, and the algorithm for finding optimum Huffman trees.

The theory of matroids, and the more general theory of greedoids, provide whole classes of such algorithms.

Greedy algorithms appear in network routing as well. Using greedy routing, a message is forwarded to the neighboring node which is "closest" to the destination. The notion of a node's location (and hence "closeness") may be determined by its physical location, as in geographic routing used by ad-hoc networks. Location may also be an entirely artificial construct as in small world routing and distributed hash table.

7. consider the following instance of knapsack problem let n=5,m=11 (p1,p2,p3)=(5,4,,7,2,3) and (w1,w2,w3)=(4,3,6,2,3).6

8. Consider the directed graph of figure below the edge lengths are given by matrix.

[image: image85]

| 0 10 15 20 |
| 5 0 9 10 |

| 6 13 0 12 |

| 8 8 9 0 | calculate the optimal tour of the graph. 10

Ans:

first we will select any arbitrary vertex say select 1.
Now process for intermediate sets with increasing size.

Step1:

Let S =Φ then,

Cost (2, Φ, 1) =d (2, 1) =5

Cost (3, Φ, 1) =d (3, 1) =6

Cost (4, Φ, 1) =d (4, 1) =8

That means we have obtained the dist (2, 1), dist (3, 1), dist (4, 1)
Step2:
Candidate(S)=1

Applying the formula,

Cost (i, s) =min {c(i,j)+g (j, s-{j})}

 Hence the vertex 2 to1, vertex3to1, vertex4to1 by considering intermediate path lengths we will calculate total optimal cost.

Cost (2, {3}, 1) =c (2, 3) +g (3, Φ, 1)

= 9+6
=15

Cost (2, {4}, 1) =c (2, 4) +g (4, Φ, 1)

= 10+8

=18

Cost (3, {2}, 1) =c (3,2) +g (2, Φ, 1)

= 13+5

=18

Cost (3, {4}, 1) =c (3,4) +g (4, Φ, 1)

= 12+8

=20

Cost (4, {2}, 1) =c (4,2) +g (2, Φ, 1)

= 8+5

=13

Cost (4, {3}, 1) =c (4,3) +g (3, Φ, 1)

= 9+6

=15

Step3:

Candidate(S)=2

Cost (2, {3, 4}, 1) =min {[c (2, 3) +g (3, {4}, 1)], [c (2, 4) +g (4, {3}, 1)]}

= min {[9+20], [10+15]}
Cost (2, {3, 4}, 1) =25

J (2, {3, 4}, 1) = 4

Therefore vertex 4 minimizes cost of Cost (2, {3, 4}, 1)
Cost (3, {2, 4}, 1) =min {[c (3,2) +g (2, {4}, 1)], [c (3,4) +g (4, {2}, 1)]}

= min {[13+18], [12+13]}

Cost (3, {2, 4}, 1) =25

J (2, {3, 4}, 1) = 4

Therefore vertex 4 minimizes cost of Cost (3, {2, 4}, 1)

Cost (4, {2, 3}, 1) =min {[c (4,2) +g (2, {3}, 1)], [c (4,3) +g (3, {2}, 1)]}

= min {[8+15],[9+18]}

Cost (4, {2, 3}, 1) =23

J (4, {2, 3}, 1) = 2

Therefore vertex 4 minimizes cost of Cost (4, {2, 3}, 1)

Step4:

Candidate(S)=3

i.e. The cost (1,{2,3,4}) but we have chosen vertex 1 initially the cycle should be completed i.e starting & ending vertex should be 1.

Cost (1, {2, 3, 4}, 1) = min {[c (1,2) +g (2, {3,4}, 1)], [c (1,3) +g (3, {2,4}, 1)], [c (1,4) +g (4, {2,3}, 1)]}

= min ([10+25],[15+25],[20+23])
= min (35,40,43)

= 35

J(1,{2,3,4}1)=2.

Hence the optimal tour has cost 35
Let us determine an optimal path

J (1,{2,3,4}1)=2.

J (2, {3, 4}, 1) = 4

J (4, {3}, 1) =3
 Hence optimal tour is 1-2-4-3-1

UNIT 5

1. Define P& NP class problem with the help of example.6

Ans:The relationship between the complexity classes P and NP is an unsolved problem in theoretical computer science, and is considered by many theoretical computer scientists to be the most important problem in the field. The Clay Mathematics Institute, which is dedicated to increasing and disseminating mathematical knowledge, has included it in its list of Millennium Prize Problems; anyone that provides a satisfactory solution to the problem may be entitled to a million dollar prize.
 In essence, the question P = NP? Asks: if 'yes'-answers to a 'yes'-or-'no'-question can be verified "quickly" can the answers themselves also be computed "quickly"? The theoretical notion of "quick" used here is that of an algorithm that runs in polynomial time, which sometimes but not always corresponds to an algorithm that is fast in practice.

Consider the subset sum problem, an example of a problem which is easy to verify but whose answer is suspected to be theoretically difficult to compute. Given a set of integers, does some nonempty subset of them sum to 0? For instance, does a subset of the set {−2, −3, 15, 14, 7, −10} add up to 0? The answer "yes, because {−2, −3, −10, 15} add up to zero", can be quickly verified with three additions. However, finding such a subset in the first place could take more time. The information needed to verify a positive answer is also called a certificate. Given the right certificates, "yes" answers to our problem can be verified in polynomial time, so this problem is in NP.

An answer to the P = NP question would determine whether problems like the subset-sum problem that can be verified in polynomial time can also be solved in polynomial time. If it turned out that P does not equal NP, it would mean that some NP problems are harder to compute than to verify in that they could not be solved in polynomial time but the answer can be verified in polynomial time.

2. Explain Boolean Satisfiability problem with some suitable example.4
Ans: Deciding whether a given Boolean formula in conjunctive normal form (CNF) has an assignment that makes the formula "true."

A statement is in conjunctive normal form if it is a conjunction (sequence of ANDs) consisting of one or more conjuncts, each of which is a disjunction (OR) of one or more literals. Examples of conjunctive normal forms include

	[image: image87.png]
	(1)

	[image: image88.png]
	(2)

	[image: image89.png]
	(3)

	[image: image90.png]
	(4)

where [image: image91.png]denotes OR, [image: image92.png]denotes AND, and [image: image93.png]denotes NOT

Every statement in logic consisting of a combination of multiple [image: image94.png], [image: image95.png], and [image: image96.png]s can be written in conjunctive normal form.

Satisfiability is the problem of determining if the variables of a given Boolean formula can be assigned in such a way as to make the formula evaluate to TRUE. Equally important is to determine whether no such assignments exist, which would imply that the function expressed by the formula is identically FALSE for all possible variable assignments. In this latter case, we would say that the function is unsatisfiable; otherwise it is satisfiable. To emphasize the binary nature of this problem, it is frequently referred to as Boolean or propositional satisfiability. The shorthand "SAT" is also commonly used to denote it, with the implicit understanding that the function and its variables are all binary-valued.

In complexity theory, the satisfiability problem (SAT) is a

problem"
decision problem
, whose instance is a Boolean expression written using only AND, OR, NOT, variables, and parentheses. The question is: given the expression, is there some assignment of TRUE and FALSE values to the variables that will make the entire expression true? A formula of propositional logic is said to be satisfiable if logical values can be assigned to its variables in a way that makes the formula true. The boolean satisfiability problem is NP-complete. The propositional satisfiability problem (PSAT), which decides whether a given propositional formula is satisfiable, is of central importance in various areas of

science"
computer science
, including theoretical computer science, algorithmics, artificial intelligence,

design"
hardware design
, electronic design automation, and verification.

3. Explain i) what is NP Complete Problems?5

 ii) Is P=NP, Explain? 5
Ans:i) NP-complete problems

An interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices. Consider these two problems:

· Graph Isomorphism: Is graph G1 isomorphic to graph G2?

· Subgraph Isomorphism: Is graph G1 isomorphic to a subgraph of graph G2?

The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but isn't thought to be NP-complete.

The easiest way to prove that some new problem is NP-complete is first to prove that it is in NP, and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of NP-complete problems. The list below contains some well-known problems that are NP-complete when expressed as decision problems.

· Boolean satisfiability problem (Sat.)
· N-puzzle
· Knapsack problem
· Hamiltonian path problem
· Travelling salesman problem
· Subgraph isomorphism problem
· Subset sum problem
· Clique problem
· Vertex cover problem
· Independent set problem
· Dominating set problem
· Graph coloring problem
[image: image97.png]
To the right is a diagram of some of the problems and the reductions typically used to prove their NP-completeness. In this diagram, an arrow from one problem to another indicates the direction of the reduction. Note that this diagram is misleading as a description of the mathematical relationship between these problems, as there exists a polynomial-time reduction between any two NP-complete problems; but it indicates where demonstrating this polynomial-time reduction has been easiest.

There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, NL-complete), and the slightly more general max. 2-sat. problem is again NP-complete. Determining whether a graph can be colored with 2 colors is in P, but with 3 colors is NP-complete, even when restricted to planar graphs. Determining if a graph is a cycle or is bipartite is very easy (in L), but finding a maximum bipartite or a maximum cycle subgraph is NP-complete. A solution of the knapsack problem within any fixed percentage of the optimal solution can be computed in polynomial time, but finding the optimal solution is NP-complete.

Explain the example of a Hamilton cycle problem as follows

For eg. Consider a graph g=(v,e) in the following fig. we have to find a Hamilton cycle using backtracking.

[image: image98]
Step1:

Initially we start our search with vertex A this vertex A becomes the root of our implicit tree.

[image: image99] (Root

Step2:

Next we choose vertex B adjacent to A as it comes first in lexographical order (B, C, D)

[image: image100]
Step 3:

Next vertex C is selected which is adjacent to Band which comes first in lexographical order(C, E)

[image: image101]
Step 4:

Next vertex D is selected which is adjacent to C and which comes first in lexographical order(D, E)

[image: image102]
 Step 5:

Next vertex E is selected which is adjacent to D if we choose vertex A then we don’t get Hamilton Cycle.

 The vertex adjacent to E are B, C, D but they already visited thus we get the dead end so we backtrack one step and removes the vertex E from the partial solution.

[image: image103]
The vertex D adjacent to E, C, A from which vertex E has already checked & we left with vertex A but by choosing this vertex we don’t get Hamilton cycle so again we backtrack one step.

Here we select the vertex E adjacent to C.

[image: image104]<= Dead End

The vertexes adjacent to E are B, C, and D so vertex D is selected.

[image: image105]
The vertexes adjacent to D are A, C, E so a vertex A is selected. Here we get the Hamilton cycle as all the vertex other than the start vertex A is visited only once A-B-C-E-D-A.

[image: image106]
4. Prove the vertex cover problem in NP Hard Problem.10
Ans: Vertex cover problem

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a classical optimization problem in computer science and is a typical example of an NP-hard optimization problem that has an approximation algorithm. Its decision version, the vertex cover problem was one of Karp's 21 NP-complete problems and is therefore a classical NP-complete problem in computational complexity theory. Furthermore, the vertex cover problem is fixed-parameter tractable and a central problem in parameterized complexity theory.
Formally, a vertex cover of a graph G is a set C of vertices such that each edge of G is incident to at least one vertex in C. The set C is said to cover the edges of G. The following figure shows examples of vertex covers in two graphs (the set C is marked with red).

A minimum vertex cover is a vertex cover of smallest possible size. The vertex cover number τ is the size of a minimum vertex cover. The following figure shows examples of minimum vertex covers in two graphs.

Examples
· The set of all vertices is a vertex cover.

· The endpoints of any maximal matching form a vertex cover.

· The complete bipartite graph Km,n has a minimum vertex cover of size τ(Km,n) = min(m,n).

Properties
· A set of vertices is a vertex cover, if and only if its complement is an independent set. An immediate consequence is:

· The number of vertices of a graph is equal to its vertex cover number plus the size of a maximum independent set

The minimum vertex cover problem is the optimization problem of finding a smallest vertex cover in a given graph.

INSTANCE: Graph G
OUTPUT: Smallest number k such that G has a vertex cover of size k.

If the problem is stated as a decision problem, it is called the vertex cover problem:

INSTANCE: Graph G and positive integer k.

QUESTION: Does G have a vertex cover of size at most k?

The vertex cover problem is an NP-complete problem: it was one of Karp's 21 NP-complete problems. It is often used in computational complexity theory as a starting point for NP-hardness proofs.
5. Write short note on: i) NP Hard & NP Complete Problem
NP hard problem

NP-hard (non-deterministic polynomial-time hard), in computational complexity theory, is a class of problems that are, informally, "at least as hard as the hardest problems in NP". A problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time Turing-reducible to H
In other words, L can be solved in polynomial time by an oracle machine with an oracle for H. Informally, we can think of an algorithm that can call such an oracle machine as a subroutine for solving H, and solves L in polynomial time, if the subroutine call takes only one step to compute. N or optimization problems.

P-hard problems may be of any type: decision problems, search problems,

 NP-complete problems

An interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices. Consider these two problems:

· Graph Isomorphism: Is graph G1 isomorphic to graph G2?

· Subgraph Isomorphism: Is graph G1 isomorphic to a subgraph of graph G2?

The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but isn't thought to be NP-complete.

The easiest way to prove that some new problem is NP-complete is first to prove that it is in NP, and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of NP-complete problems. The list below contains some well-known problems that are NP-complete when expressed as decision problems.

Examples of NP-Complete

• TravellingSalesman Problem: Given a set of cities and distances

Between all pairs, find a tour of all the cities of distance less than M.

• Hamiltonian Cycle: Given a graph, find a simple cycle that includes

All the vertices.

• Partition: Given a set of integers, can they be divided into two sets

Whose sum is equal?

• Integer Linear Programming: Given a linear program is there an

Integer solution?

· Vertex Cover: Given a graph and an integer N, is there a set of fewer than N vertices which touches all the edges?
 ii) Computational Complexity. 10
Ans:
Computational complexity theory is a branch of the theory of computation in computer science that focuses on classifying computational problems according to their inherent difficulty. In this context, a computational problem is understood to be a task that is in principle amenable to being solved by a computer. Informally, a computational problem consists of problem instances and solutions to these problem instances. For example, primality testing is the problem of determining whether a given number is prime or not. The instances of this problem are natural numbers, and the solution to an instance is yes or no based on whether the number is prime or not.

A problem is regarded as inherently difficult if solving the problem requires a large amount of resources, whatever the algorithm used for solving it. The theory formalizes this intuition, by introducing mathematical models of computation to study these problems and quantifying the amount of resources needed to solve them, such as time and storage. Other complexity measures are also used, such as the amount of communication (used in communication complexity), the number of gates in a circuit (used in circuit complexity) and the number of processors (used in parallel computing). In particular, computational complexity theory determines the practical limits on what computers can and cannot do.

Closely related fields in theoretical computer science are analysis of algorithms and computability theory. A key distinction between computational complexity theory and analysis of algorithms is that the latter is devoted to analyzing the amount of resources needed by a particular algorithm to solve a problem, whereas the former asks a more general question about all possible algorithms that could be used to solve the same problem. More precisely, it tries to classify problems that can or cannot be solved with appropriately restricted resources. In turn, imposing restrictions on the available resources is what distinguishes computational complexity from computability theory: the latter theory asks what kind of problems can be solved in principle algorithmically.

Best, worst and average case complexity
Visualization of the quicksort algorithm that has average case performance Θ(nlogn).

The best, worst and average case complexity refer to three different ways of measuring the time complexity (or any other complexity measure) of different inputs of the same size. Since some inputs of size n may be faster to solve than others, we define the following complexities:

· Best-case complexity: This is the complexity of solving the problem for the best input of size n.

· Worst-case complexity: This is the complexity of solving the problem for the worst input of size n.

· Average-case complexity: This is the complexity of solving the problem on an average. This complexity is only defined with respect to a probability distribution over the inputs. For instance, if all inputs of the same size are assumed to be equally likely to appear, the average case complexity can be defined with respect to the uniform distribution over all inputs of size n.

For example, consider the deterministic sorting algorithm quicksort. This solves the problem of sorting a list of integers which is given as the input. The best-case scenario is when the input is already sorted, and the algorithm takes time O(n log n) for such inputs. The worst-case is when the input is sorted in reverse order, and the algorithm takes time O(n2) for this case. If we assume that all possible permutations of the input list are equally likely, the average time taken for sorting is O(n log n).

Upper and lower bounds on the complexity of problems
To classify the computation time (or similar resources, such as space consumption), one is interested in proving upper and lower bounds on the minimum amount of time required by the most efficient algorithm solving a given problem. The complexity of an algorithm is usually taken to be its worst-case complexity, unless specified otherwise. Analyzing a particular algorithm falls under the field of analysis of algorithms. To show an upper bound T(n) on the time complexity of a problem, one needs to show only that there is a particular algorithm with running time at most T(n). However, proving lower bounds is much more difficult, since lower bounds make a statement about all possible algorithms that solve a given problem. The phrase "all possible algorithms" includes not just the algorithms known today, but any algorithm that might be discovered in the future. To show a lower bound of T(n) for a problem requires showing that no algorithm can have time complexity lower than T(n).

Upper and lower bounds are usually stated using the big Oh notation, which hides constant factors and smaller terms. This makes the bounds independent of the specific details of the computational model used. For instance, if T(n) = 7n2 + 15n + 40, in big Oh notation one would write T(n) = O(n2).

6. i) What is decision problem? Explain.5
Ans: the problem under this class has the single bit output which shows 0 or 1 i.e. the answer for the problem is either 0 or 1.

For instance, some decision problems are:

· Given two sets of string s1 AND s2, does s2 is substring of S1?

· Given two sets of elements s1 and s2, do both the sets contain same number of elements?

Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as optimization problem. For solving optimization problem an optimization algorithm is used. For instance, the optimization problem is as follows.

· Given a weighted graph G and an integer i, does G have minimum spanning tree of weight at most i?

· Given S, does there exist a subset of elements that fits in the knapsack and has total profit of at least S?

We can say that given algorithm A accepts the string S only when A produces the output yes on input S As a set of string is referred to a language, decision problem can also be viewed as a set L of string where L is a language thus an algorithm A accepts language L if A produces the output yes on input S which belong to L otherwise it produces output no.

It is noted that the class P problems include all the decision problems (or languages)L that can be accepted in the worst case running time .thus, for algorithm A ,it accepts S € ,in polynomial time P(n) where n is the input size of S and produces output S .But it is noticeable that the class P definition does not say anything abt output no . we refer to this situation as a complement of the algorithm A for output yes for a given set of binary strings that are not present in L. we can also create an algorithm C that accepts the complement of L if given an algorithm A that accepts a language L in polynomial time ,P(n). Therefore, if a language L, showing some decision problem, is in class P, the complement of L is also in class P.

 Decision problems as formal languages
Decision problems are one of the central objects of study in computational complexity theory. A decision problem is a special type of computational problem whose answer is either yes or no, or alternately either 1 or 0. A decision problem can be viewed as a formal language, where the members of the language are instances whose answer is yes, and the non-members are those instances whose output is no. The objective is to decide, with the aid of an algorithm, whether a given input string is member of the formal language under consideration. If the algorithm deciding this problem returns the answer yes, the algorithm is said to accept the input string, otherwise it is said to reject the input.

An example of a decision problem is the following. The input is an arbitrary graph. The problem consists in deciding whether the given graph is connected, or not. The formal language associated with this decision problem is then the set of all connected graphs—of course, to obtain a precise definition of this language, one has to decide how graphs are encoded as binary strings

 ii) When a problem is said to be intractable.5
7. Write short note on: NP Hard & NP Complete Problem

Ans :

NP hard problem

NP-hard (non-deterministic polynomial-time hard), in computational complexity theory, is a class of problems that are, informally, "at least as hard as the hardest problems in NP". A problem H is NP-hard if and only if there is an NP-complete problem L that is polynomial time Turing-reducible to H

In other words, L can be solved in polynomial time by an oracle machine with an oracle for H. Informally, we can think of an algorithm that can call such an oracle machine as a subroutine for solving H, and solves L in polynomial time, if the subroutine call takes only one step to compute. NP-hard problems may be of any type: decision problems, search problem or optimization problems.

 NP-complete problems

An interesting example is the graph isomorphism problem, the graph theory problem of determining whether a graph isomorphism exists between two graphs. Two graphs are isomorphic if one can be transformed into the other simply by renaming vertices. Consider these two problems:

· Graph Isomorphism: Is graph G1 isomorphic to graph G2?

· Subgraph Isomorphism: Is graph G1 isomorphic to a subgraph of graph G2?

The Subgraph Isomorphism problem is NP-complete. The graph isomorphism problem is suspected to be neither in P nor NP-complete, though it is in NP. This is an example of a problem that is thought to be hard, but isn't thought to be NP-complete.

The easiest way to prove that some new problem is NP-complete is first to prove that it is in NP, and then to reduce some known NP-complete problem to it. Therefore, it is useful to know a variety of NP-complete problems. The list below contains some well-known problems that are NP-complete when expressed as decision problems.

· Boolean satisfiability problem (Sat.)
· N-puzzle
· Knapsack problem
· Hamiltonian path problem
· Travelling salesman problem
· Subgraph isomorphism problem
· Subset sum problem
· Clique problem
· Vertex cover problem
· Independent set problem
· Dominating set problem
· Graph coloring problem
[image: image112.png]
8. Write short note on: i) simplified Hard Problem.
 ii) Decision Problem. 10

Ans:

The problem under this class has the single bit output which shows 0 or 1 i.e. the answer for the problem is either 0 or 1.

For instance, some decision problems are:
· Given two sets of string s1 AND s2, does s2 is substring of S1?

· Given two sets of elements s1 and s2, do both the sets contain same number of elements?

Any problem that involves the identification of an optimal (either minimum or maximum) value of a given cost function is known as optimization problem .for solving optimization problem an optimization algorithm is used. For instance, the optimization problem is as follows.

· Given a weighted graph G and an integer i, does G have minimum spanning tree of weight at most i?

· Given S, does there exist a subset of elements that fits in the knapsack and has total profit of at least S?

We can say that a given algorithm A accepts the string S only when A produces the output yes on input S As a set of string is referred to a language, a decision problem can also be viewed as a set L of string where L is a language thus an algorithm A accepts language L if A produces the output yes on input S which belong to L otherwise it produces output no.

It is noted that the class P problems include all the decision problems (or languages) L that can be accepted in the worst case running time .thus, for algorithm A, it accepts S €, in polynomial time P (n) where n is the input size of S and produces output S .But it is noticeable that the class P definition does not say anything abt output no. we refer to this situation as a complement of the algorithm A for output yes for a given set of binary strings that are not present in L. we can also create an algorithm C that accepts the complement of L if given an algorithm A that accepts a language L in polynomial time ,P(n). Therefore, if a language L, showing some decision problem, is in class P, the the complement of L is also in class P.

Decision problems as formal languages
Decision problems are one of the central objects of study in computational complexity theory. A decision problem is a special type of computational problem whose answer is either yes or no, or alternately either 1 or 0. A decision problem can be viewed as a formal language, where the members of the language are instances whose answer is yes, and the non-members are those instances whose output is no. The objective is to decide, with the aid of an algorithm, whether a given input string is member of the formal language under consideration. If the algorithm deciding this problem returns the answer yes, the algorithm is said to accept the input string, otherwise it is said to reject the input.

An example of a decision problem is the following. The input is an arbitrary graph. The problem consists in deciding whether the given graph is connected, or not. The formal language associated with this decision problem is then the set of all connected graphs—of course, to obtain a precise definition of this language, one has to decide how graphs are encoded as binary strings

9. State and prove Cooks theorem?10

In computational complexity theory, the Cook–Levin theorem, also known as Cook's theorem, states that the Boolean satisfiability problem is NP-complete. That is, any problem in NP can be reduced in polynomial time by a deterministic Turing machine to the problem of determining whether a Boolean formula is satisfiable.

An important consequence of the theorem is that if there exists a deterministic polynomial time algorithm for solving Boolean satisfiability, then there exists a deterministic polynomial time algorithm for solving all problems in NP. Crucially, the same follows for any NP complete problem

The circuit SAT problem states that if given a Boolean circuit & the values of some of its inputs does there exist a method from which an output 1 can be obtained by settingrest of inputs.

Cooks statement :A problem is in NP if and only if it can be reduced to circuit SAT

Theorem: circuit SAT is NP Complete.

Proof: suppose L is a NP problem the L has a polynomial time verifierV:

1. If x € L, for every witness y, V(x, y) =1

2. if x not € L, for all witness y,V(x,y)=0

 We can build a circuit with polynomial size for the verifier V,since the verifier runs in polynomial time the circuit contains AND,OR,NOT gates .the circuit has |x|+|y| sources, where|x|of them are hard coded to the values of the bits in x & the rest |y| are variables.

Now solve the problem L, we only need to find a setting of|y| variables in the input which causes the circuit to output 1.

That means the problem of determining whether or not the circuit can be caused to a output 1 the following shows how the circuit sataisfaction problem can be reduced to an instance SAT.each gate in the circuit can be represented by 3CNF (each clause has exactly three terms).

1) The functionality of an OR gate with input a, b and output Zi is represented as:

 (aORbORZi) AND (ZiORa) AND (ZiORb)

Where bold letter shows bar i.e. a = a bar
2) The functionality of an NOT gate with input a, and output Zi is represented as: (aORZi) AND (aORZi)
Suppose we have q gates in V marked as Z1,Z2…..Zq with Zqrepresentim=ng the final output of V each of them either takes some of the sources or some intermediate output Zi as input therefore the whole circuit can be represented as aformula in CNF:

Φ=c1ANDc2AND….CqANDZq
Where ci= (t1ORt2ORt3), t1, t2, t3 € (x, y, z1, z2…zq, z1, z2,…..zq).

 As we said before even if the last clause of Φ has only one term zq, we may extend Φto an equivalent formula in 3CNF, by adding independent variables

Thus, we have shown that the circuit can be reduced to Φ a formula in 3CNF which is satisfiable iff the original circuit could be made output a value of 1 hence L<=P SAT .since SAT can be trivially shown to be in NP (any satisfying assignment may be used as a certificate of member ship).

So we may conclude that SAT is NP complete.
A

B

e

D

C

A

A

B

C

D

A

B

C

D

C

E

C

E

D

C

B

A

D

E

E

E

D

C

E

D

C

B

A

E

E

E

D

C

E

D

C

B

A

E

E

D

C

E

D

C

B

A

D

D

E

E

D

C

E

D

C

B

A

A

1

2

4

3

5

6

6

5

3

4

2

1

6

5

3

4

2

R

B

G

B

R

G

R

G

B

3

R

G

R

G

B

3

R

G

R

G

5

3

R

G

R

6

5

3

R

G

R

6

5

3G

4

G

R

D

e

C

B

A

A

A

B

C

D

A

B

C

D

E

C

A

B

C

D

E

C

D

E

E

A

B

C

D

E

C

D

E

E

A

B

C

D

E

C

D

E

E

A

B

C

D

E

C

D

E

E

D

A

D

E

E

D

C

E

D

C

B

A

R

R

G

R

G

R

G

B

R

G

B

R

G

B

R

G

B

R

G

B

10; 50, 10

5; 10, 5

5; 30, 5

2; 40, 2

; 0, 0

2, 5; 30, 7

2, 10; 90, 12

2, 5; 50, 7

5, 10; 80, 15

5, 5; 40, 10

10, 5:60, 15

5; 10, 5

A

B

C

D

R

G

R

B

R

G

B

R

B

G

R

B

G

G

B

R

A

D

E

E

D

C

E

D

C

B

A

D

E

E

D

C

E

D

C

B

A

E

E

D

C

E

D

C

B

A

E

E

D

C

E

D

C

B

A

E

E

D

C

E

D

C

B

A

C

E

D

C

B

A

D

C

B

A

A

D

e

C

B

A

3

1

2

4

5

6

7

8

9

100

11

12

1

2

3

4

