                                                    2.4 SHARC Processor 
                                                          Why DSP

         * a special class of microprocessors that are optimized for computing the real- time  

         Calculations used in signal processing

 *DSPs have an architecture that simplifies application designs and makes low-cost signal processing a reality
                                             Characteristics

· fast, flexible computation units

· unconstrained data flow to and from the computation units

· extended precision and dynamic range in the computation units

· dual address generators

· efficietn program sequencing and looping mechanisms
                               SHARC family of DSPs 

· Harvard architecture 

· one instructions per line 

· each instruction, end with with a semicolon (;) 

· A label, end with a colon (:) 

· Comments, start with an exclamation point (!) 

                   Instructions example

· R1 = DM(M0,I0), R2 = PM(M8,I8); ! a comment 

· Label:

R3 = R1 + R2;
               2.4.1 Memory Organization 
· SHARC uses different word sizes and address space sizes for instructions and data 

· instruction consists of 48 bits 

· basic data word, 32 bits 

· address, 32 bits on-chip memory

                                  on-chip memory
· the 21061, has smallest 1Mbit of on-chip memory 

· internal memory: program memory (PM),  data memory (DM) 

                                types of data
· 32-bit IEEE single-precision floating-point

· 40-bit IEEE extended-precision floating-point

· 32-bit integers
                             SHARC memory 
· allows the program memory to hold both data and instructions 

· allow extra data to be squeezed into the on-chip memory 

· allows data to be fetched from both memories in parallel 
· The PM bus is used to access either instructions or data

· During a single cycle the processor can access two data operands, one over the PM bus and one over the DM bus

· The register file has two sets (primary and alternate) of sixteen registers each

· The data address generators (DAGs) provide memory addresses when data is transferred between memory and registers

· DAG1 supplies 32-bit addresses to data memory

· DAG2 supplies 24-bit addresses to program memory for program memory data accesses

· Each DAG keeps track of up to eight address pointers, eight modifiers and eight length values

· A pointer used for indirect addressing can be modified by a value in a specified register
                                              2.4.2 Data Operations 
                                     SHARC programming model 

· The primary data registers, r0-r15 or f0-f15

· R0-R15: used for integer operations

· F0-F15: used for floating-point operations

· registers are 40 bits long for data type

- 40-bit extended-precision floating-point value

- 32-bit data types, in most-significant bits
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                                                  CPU
· CPU has three major data function units: an ALU, a multiplier, and a shifter. 

· three most-significant mode registers for data operations:

- arithmetic status (ASTAT), 

- sticky (STKY), 

- mode 1 (MODE1) 

· The ALU updates seven status flags in the ASTAT register at the end of each operation

· ALU also updates four “sticky” status flags in the STKY register. 

· Once set, a sticky flag remains high until explicitly cleared

                                   ASTAT
	Bit
	Name
	Definition

	0
	AZ
	ALU result zero or floating-point underflow

	1
	AV
	ALU overflow

	2
	AN
	ALU result negative

	3
	AC
	ALU fixed-point carry

	4
	AS
	ALU X input sign (ABS, MANT operations)

	5
	AI
	ALU floating-point invalid operation

	10
	AF
	Last ALU operation was a floating-point operation

	31-24
	CACC
	Compare Accumulation register (results of last 8 compare operations)


                                      STKY
	Bit
	Name
	Definition

	0
	AUS
	ALU floating-point underflow

	1
	AVS
	ALU floating-point overflow

	2
	AOS
	ALU fixed-point overflow

	5
	AIS
	ALU floating-point invalid operation


        SHARC arithmetic 
· Rn, Rx, and Ry are arbitrary data registers R0-R15 

· operations set various status bits in the ASTAT1 and STKY registers 

· COMP compares two values without modifying any data registers 

	Rn = Rx+Ry 

Rn = Rx-Ry 

Rn = Rx+Ry+CI 

Rn = Rx-Ry+CI-l 

Rn=(Rx + Ry)/2 

COMP(Rx,Ry) 
	Add

Subtract

Add with carry

Subtract with borrow

Average

Compare


	Rn = Rx AND Ry 

Rn = Rx OR Ry 

Rn = Rx XOR Ry 

Rn = NOT Rx 

Rn = MIN(Rx,Ry) 

Rn = MAX(Rx,Ry) 

Rn = CLIP Rx by Ry 
	Logical AND

Logical OR

Logical exclusive OR

Logical negate

Minimum of Rx, Ry

Maximum of Rx, Ry

Clip Rx within range [-Ry,Ry] 


· All the ALU operations set the AZ (ALU result zero), AN (ALU result negative), AV (ALU result overflow), AC (ALU fixed-point carry), and AI (floatingpoint invalid) bits in the ASTAT register. 

· STKY register is a sticky version of ASTAT register. 

· STKY bits are set along with the ASTAT register bits, but are not cleared. 

· STKY bits always remain set until cleared by an instruction. 

                                    Saturation Mode
· The SHARC can perform saturation arithmetic on fixed-point values. 

· all positive fixed-point overflows cause the maximum positive fixed-point number (0x7FFF FFFF) to be returned, and all negative overflows cause the maximum negative number (0x8000 0000) to be returned

· In saturation arithmetic, an overflow results in the maximum-range value, not the result of wrapping around the numeric range. 

· Saturation mode is controlled by the ALUSAT bit in the MODE1 register 

· SHARC doesn't have a divide instruction 

· Iterative algorithms are used to compute both reciprocals and square roots. 

· The RECIPS and RSQRTS operations are used to start these iterative algorithms 

                      Floating-Point Rounding Modes

· If the TRUNC bit is set, the ALU rounds a result to zero (truncation). If the TRUNC bit is cleared, the ALU rounds to nearest.

· The rounding modes used for floating-point arithmetic are controlled by two bits in the MODE1 register 

· Multiplication sets the MN (multiplier result negative), MV (multiplier overflow), MU (multiplier floating-point underflow), and MI (multiplier floatingpoint invalid operation) bits in the ASTAT register. 

	Fn = Fx + Fy

Fn = Fx-Fy

Fn = ABS(Fx + Fy)

Fn = ABS(Fx-Fy)

Fn=(Fx + Fy)/2

COMP(Fx,Fy)

Fn = -Fx
	Add

Subtract

Absolute value of sum

Absolute value of difference

Average

Compare

Negate


	Fn = ABSFx

Fn = PASS Fx

Fn = RND Fx

Fn = SCALE Fx by Ry

Rn = MANX Fx

Rn = LOGB Fx

Rn = FIX Fx, 

Rn = TRUNC Fx

Fn = FLOAT Rx by Ry, LOAT Rx 
	Absolute value

CopyFxtoFn

Round

Scale exponent of Fx by Ry

Extract mantissa of Fx

Convert exponent of Fx to integer

Convert floating-point to integer

Convert integer to floating-point


	Fn = RECIPS Fx

Fn = RSQRTS Fx

Fn = Fx COPYSIGN Fy

Fn = MIN(Fx.Fy)

Fn = MAX(Fx,Fy)

Fn = CLIPFxbyFy 
	Create seed for reciprocal

Create seed for reciprocal square root

Copy sign of Fy to Fx

Minimum of Fx, Fy

Maximum of Fx, Fy

Clip Fx within range [-Fy,Fy] 


· The multiplier performs fixed-point and floating-point multiplication. 

· perform saturation, rounding, and setting the result to 0. 

· Fixed-point multiplication produces an 80-bit result

· Logical shifts fill with zeroes, while arithmetic shifts copy sign bits. 

· The distance to shift, supplied by the Ry register, may be positive for a left shift or negative for a right shift. 

· Shift operations set the SZ (shifter zero), SV (shifter overflow), and SS (shifter input sign) bits in the ASTAT register.

	Rn = LSHIFT Rx by Ry

Rn = Rn OR LSHIFT Rx by Ry

Rn=ASHIFT Rx by Ry

Rn = Rn OR ASHIFT Rx by Ry

Rn = ROT Rx by Ry

Rn = BCLR Rx by Ry

Rn = BSET Rx by Ry

Rn = BTGL Rx by Ry
	Logical shift distance Ry

Logical shift and logical OR

Arithmetic shift

Arithmetic shift and logical OR

Rotate distance Ry

Clear one bit in Rx

Set one bit in Rx

Toggle one bit in Rx


	BTST Rx by Ry

Rn = FDEP Rx by Ry

Rn = Rn OR FDEP Rx by Ry

Rn = FDEP Rx by Ry

Rn = Rn OR FDEP Rx by Ry

Rn = FEXT Rx by Ry

Rn = FEXT Rx by Ry

Rn = EXP Rx
	Test one bit in Rx

Deposit field from Rx into Rn

Deposit field from Rx using OR

Deposit and sign extend field from Rx

Deposit and sign extend using OR

Extract field from Rx

Extract and sign extend field from Rx

Extract exponent field


	Rn = EXP Rx (EX)

Rn = LEFTZ Rx

Rn = LEFTO Rx

Rn = FPACK Fx

Fx = FUNPACK Rn 
	Extract exponent field from ALU

Extract number of leading Os

Extract number of leading Is

Convert 32-bit floating-point to 16-bit floating-point

Convert 16-bit floating-point to 32-bit floating-point 


       Ex2-7 Data Operation Status Bits in the SHARC 
· fixed-point ALU calculation -1 + 1 = 0, 

· ASTAT status bits are set: AZ = 1, AU = 0, AN = 0, AV = 0, AC = 1, and AI = 0. 

· floating-point operation -1EO+ 1EO = 0E0, AOS (ALU fixed-point underflow) will be similarly set. 

               Ex2-7Data Operation Status Bits in the SHARC 
· fixed-point multiplier operation -2 * 3, 

· ASTAT bits are set as follows: 

· MN = 1, MV = 0, MU = 1, and MI = 0. 

· multiplier has four STKY bits, none will be set

· MOS (multiplier fixed-point overflow), 

· MVS (multiplier floating-point overflow), 

· MUS (multiplier floating-point underflow), 

· MIS (multiplier floating-point invalid operation).

           Ex2-7Data Operation Status Bits in the SHARC
· For the following shifter operation,

· LSHIFT Ox7fffffff BY 3

· ASTAT bits will be set as follows: 

· SZ = 0, SV = 1, and SS = 0. 

· The shifter has no sticky bits.

                                       load and store operations 
· operands must be loaded into              registers before operating on them. 

· SHARC supplies special registers that are used to control loading and storing. 

· SHARC has two data address generators (DAGs): one for the data memory and the other for the program memory
                                             DAGs

· Data address generator 1 (DAG1) generates 32-bit addresses on the DM Address Bus

· Data address generator 2 (DAG2) generates 24-bit addresses on the PM Address Bus

· Each DAG has four types of registers: Index (I), Modify (M), Base (B), and Length (L) registers

· I register acts as a pointer to memory

· M register contains the increment value for advancing the pointer. 

· B registers and L registers are used only for circular data buffers. 

· B register holds the base address (i.e. the first address) of a circular buffer. 

· L register contains the number of locations in (i.e. the length of) the circular buffer.

· two DAGs, the SHARC can perform two load-store operations per cycle. 

· DAG hardware automatically updates their values so that a series of accesses can be very easily performed. 

· DAGs quite useful for the sequential accesses

· Each data address generator has eight sets of primary registers. 

· Having several sets allows for quicker access of multiple sets of data

· The registers numbered 0 through 7 belong to DAG1, while registers 8 through 15 belong to DAG2. 
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                                           MODE1
	Bit
	Name
	Definition

	3
	SRD1H
	DAG1 alternate register select (4-7)

	4
	SRD1L
	DAG1 alternate register select (0-3)

	5
	SRD2H
	DAG2 alternate register select (12-15)

	6
	SRD2L
	DAG2 alternate register select (8-11)

	
	
	


                                DAGs
· DAGs provide the following addressing modes 

· immediate value 

· R0 = DM (0x2000000); 

· R0 = DM(_a);

· loads R0 the contents of the variable a

· DM(_a) = R0;

· stores R0 into memory location 

· absolute address 

· has the entire address in the instruction 

· address bits take up most of the instruction, 32bits/40bits

                        post-modify with update mode 
· sweep through a range of addresses 

· uses an I register and a modifier, M register or an immediate value. 

· I register specifies the address, updated by the modifier value 

· R0 = DM(I3,M1) 

· DM(I2,1) = R1 

                     base-plus-offset addressing 
· address of the location to be fetched is computed as I + M, where I is the base and M is the modifier or offset 

· I0 = 0x2000000 and Ml = 4, 

· R0 = DM(M1,I0)

· load DM(0x2000004) into R0

                    circular buffers
· A circular buffer is an array of n elements; when the n + 1th element is referenced, the reference goes to buffer location 0, wrapping around from the end to the beginning of the buffer. 

· L register is set with a positive, nonzero value as the starting point in the circular buffer, 

· B register of the same number is loaded with the base address of the circular buffer. 

                                 bit-reversal addressing 
· fast Fourier transform (FFT) 

· Bit-reversal addressing can be performed only in I0 and I8, as controlled by the BR0 and BR8 bits in the MODE1 register. 

                       storing data in program memory 
· allows data to be stored in the                program memory 

· allows two data fetches per cycle 

· F0 = DM(M0,I0), F1 = PM(M8,I9)

· simultaneously load F0 from data memory and F1 from program memory 
· float dm a[N]; 

· float pm b[N];

· will place the a[] array in data memory and b[] in program memory 

                Ex2-8 C Assignments in SHARC Instructions 
· x = (a + b) - c; 

· r0 for a, r1 for b, r2 for c, and r3 for x 

· R0 = DM(_a);        ! get value of a

· R1 = DM(_b);        ! load value of b

· R3 = R0 + R1;       ! set result for x to a + b

· R2 = DM(_c) ;        ! get value of c

· SUB R3 = R3 - R2 ; ! complete computation of x 

· DM(_x) = R3 ;        ! store x at proper location

         Ex2-8 C Assignments in SHARC Instructions
· y = a*(b + c); 

· use r0 for a, r1 for b, and r2 for both c and y 

· R1 = DM(_b);         ! load b

· R2 = DM(_c);        ! load c

· R2 = R1 + R2 ;      ! compute partial result for y

· R0 = DM(_a);        ! load a

· R2 = R2 * r0 ;       ! compute final value of y

· DM(_y) = R2 ;       ! store y

· y = a*(b + c); 

· made shorter by using pointers 

· R2 = DM(I1,M5), R1 = PM(I8,M13);      ! load b and c in parallel

· R0 = R2 + R1, R12 = DM(I0,M5);          ! add (b+c) and load (a) in parallel

· R6 = R12*R0 (SSI);    ! finish y computation

· DM(I0,M5) =R8;         ! store y

· z = (a«2) | (b & 15);

· r0 for a and z, r1 for b, and r3 to hold the bit mask to be ANDed 

· R0 = DM(_a) ;               ! get value of a

· R0 = LSHIFT R0 BY #2 ;     ! perform shift

· R1 = DM(_b) ;               ! get value of b

· R3 = #15 ;                   ! set up the bit mask for ANDing

· R1 = R1 AND R3 ;         ! perform logical AND

· R0 = R1 OR R0 ;           ! compute final value of z

· DM(_z) = R0 ;               ! store value of z

                         2.4.3 Flow of Control 
                       JUMP instruction 
· jumps to the location foo 

- JUMP foo

· Direct: specifies a 24-bit address in immediate 

· Indirect: supply by DAG2 data address generator.

· PC-relative: specifies an immediate value that is added to the current PC.

                     loop instruction 
· LCNTR = n, DO Label UNTIL LCE;

· loop instruction specifies the following:

- length of the loop, loop counter LCNTR

- Label, the address for the last instruction in the loop

- loop termination condition LCE, which stands for "loop counter expired"

	True version

EQ

LT

LE

AC

AV
	Description

ALU = 0

ALU<0

ALU≤0

ALU carry

ALU overflow
	Complement version

NE

GE

GT

NOT AC

NOT AV

	
	
	


	MV

MS

SV

SZ

FLAGO_IN
	Multiplier overflow

Multiplier sign

Shifter overflow

Shifter zero

Flag 0 input
	NOT MV

NOT MS

NOT SV

NOT SZ

NOT FLAGO_IN


	FLAG1_IN

FLAG2_IN

FLAG3_IN

TF

LCE

NOT LCE
	Flag 1 input

Flag 2 input

Flag 3 input

Bit test flag

Loop counter expired

Loop counter not expired
	NOT FLAG1_IN

NOT FLAG2_IN

NOT FLAG3_IN

NOT TF


                       Ex2-9 if statement 

· if (a > b) { 

· x = 5; 

· y = c + d;

· 
}

· else x = c - d; 

· !test

· R0 = DM(_a); 
  ! load a

· R1 = DM(_b); 
  ! load b

· COMP(R0,R1) 
  ! Compare a,b

· IF GE JUMP fbock;  ! jump if fails test

· ! true block 





· blocks:
R0 = 5;
! get value for x

· DM(_x) = R0;
! store value for x

· R0 = DM(_c);
! get c

· R1 = DM(_d);
! getd

· R1 = R0 + R1;
!compute c + d

· DM(_y) = R1;
! save value for y

· JUMP other; 

! skip false block
                 an example Ex2-9 if statement 
· ! false block 





· fblock:   R0 = DM(_c); ! get c

·             R1 = DM(_d);
! get d

·             R1 = R0 - R1;
! compute c - d

·             DM(_x) = Rl;
! save value for x

· other: ...                     ! code after if



                 Ex2-9 if statement
· if (a > b)

· y = c - d; 

· else

· y = c + d;

· ! load values

· R1 = DM(_a); 

! load a

· R8 = DM(_b); 

! load b

· R2 = DM(_c);

! load c

· R4 = DM(_d);             ! load d

· ! compute both sum and difference

· r12 = r2 + r4, r0 = r2 - r4; 

· ! choose which one to save, copy it into r0 if necessary, then write to y

· comp(r8,rl);      ! Compare b,a

· if ge r0 = r12;   ! a <=b

· dm(_y) = r0;    ! 

· When control reaches the last instruction in the loop, the machine immediately returns to the head of the loop unless the loop counter has expired. 

· zero-overhead loop: because the jump back to the top of the loop (and associated delays) are avoided.

· loop instruction: use two stacks to handle nested loops (one loop contained inside another).

· The PC is in fact a stack; a separate stack holds the loop counters for all active loops.

· PC stack is 30 deep, holds subroutine return addresses, loop addresses, loop counter stack is 6 deep. 

· When the DO UNTIL is first encountered,

- loop end address pushed onto PC stack

- new loop counter value pushed onto the loop counter stack. 

· reaches the loop end address, 

- CPU automatically decrements the loop counter and checks its value. 

· If the termination condition (which may be LCE or NOT LCE) is not satisfied, the PC is set to the instruction just after the DO UNTIL for another iteration. 

· If the condition is satisfied, the two stacks are popped and execution continues at the instruction after the loop end address.

                                  ex 2-10 loop
· for (i = 0, f = 0; i < N; i++) 

· f = f + c[i] * x[i];

· ! loop setup

· I0 = _a;       ! I0 points to a[0]

· M0 = 1;       ! set up increment

· I8 = b;         ! I8 points to b[0]

· M8 = 1;        ! set up postincrement mode
· ! loop body

· LCNTR = N, DO loopend UNTIL LCE;

· ! use postincrement mode

· R1 = DM(I0,M0), R2 = PM(I8,M8); 

· loopend: R8 = R1*R2, R12 = R12 + R9; ! multiply and accumulate

· optimized:

· ! loop setup

· I4 = _a;               ! load a

· I12 = _b;             ! load b

· R4 = R4 xor R4, R1 = DM(I4,M6), R2 = PM(I12,M14);

·  MR0F=R4, MODIFY(I7,M7); 

· ! start loop

· LCNTR = 20, DO(PC,loop) UNTIL LCE;

· loop:      MRF = MRF + R2*R1 (SSI), R1 = DM(I4,M6), R2 = PM(I12,M14); 

· ! loop clean-up

· R0 = MR0F;

                      SHARC function calls 
· procedure calls,

· CALL foo;

· executed conditionally

· IF GT CALL (PC,100);

· a PC-relative call to a point 100 locations past the current PC value. 

· CALL instruction pushes current PC value plus 1 onto PC stack before to target address.

· return from a procedure call is performed by the RTS (return from subroutine) instruction. 

· This instruction pops the PC stack to return to the instruction after the call.

· The SHARC does not include specific instructions for saving and restoring registers for procedure calls. 

                        Example 2-11 
· void f1(int a) { 

· f2(a);

· }

· SHARC has a PC stack, do not need to push the return address, only the registers.

· SHARC does not have general-purpose stack operators, use the DAGs to implement a stack with a little effort. 

· Pushing stack is— use postincrement mode, I register automatically points to the empty location at the top of the stack. 

· Reading values off the stack requires specifying a constant offset in the M field to provide the distance from the end of the stack frame to the variable. Popping the stack means modifying the I register.

· use I1 to point to the stack and we assume that Ml has been set to 1, the stack push increment, at the start of the program. Here is handwritten code for fl(), which includes a call to f2(): 

· fl:  
R0 = DM(I1,-1);
! load argument a into R0 from stack

· ! call f2() 




· DM(I1,M1) = R0; 
! push f2's argument onto the stack

· CALL f2;


! call f2

· ; return from fl() 



· MODIFY(I1,-1); 
! pop one element off stack

· RTS;


! return

                2.4.4 Parallelism within Instructions 
· SHARC to allow operations to performe simultaneously. 

· many machines offer parallel execution, but hidden from the programmer. 

· The SHARC's wide instruction word allows the programmer to put together parallel operations

· The machine supports both memory parallelism and operation parallelism. 

· reduce the number of instructions required for common operations. 

· For example, the basic operation in a dot product loop can be performed in one cycle that performs two fetches, a multiplication, and an addition.

· The modified Harvard architecture allows multiple data fetches in a single instruction. 

· The most common instructions allow a memory reference and a computation to be performed at the same time. 

· Memory references can be done two at a time in many instructions, with each reference using a DAG.

· instruction set allows the CPU's function units to be performed in a single instruction

· fixed-point multiply-accumulate and add, subtract, or average;

· floating-point multiplication and ALU operation; and

· multiplication and dual add-subtract.

· restrictions on the sources of the operands when operations are combined. 

· The operands going to the multiplier must come from R0 through R7 (or in the case of floating-point operands, f0 to f7), with one input coming from RO-R3/fO-f3 and the other from R4-R7/f0-f7. 

· The ALU operands must come from R8-R15/f8-fl5, with one operand coming from R8-Rll/f8-fll and the other from R12-R15/fl2-fl5. 

· performs three operations:

· R6 = R0 * R4, R9 = R8 + R12, RI0 = R8 - R12 

                           2.5 Summary 
· all CPUs are similar— read and write memory, perform data operations, and make decisions. 

· many ways to design an instruction set, as illustrated by the differences between the ARM and the SHARC. 

· When designing complex systems, in high-level language form, which hides many of the details of the instruction set. 

· differences in instruction sets can be reflected in nonfunctional characteristics, such as program size and speed.
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