TABLE OF CONTENTS
Abstract………………………………………………………………………….3
Chapter 1: Introduction………………………………………………………….4
1.1 Network Management……………………………………………… 5
1.2 Simple Network Management Protocol Architecture……………….9
1.3 Trap Directed Polling……………………………………………….10
1.4 Proxies………………………………………………………………11
Chapter 2: Simple Network Management Protocol……………………………..13

2.1 SNMP Basic Commands…………………………………………….14

2.2 SNMP Management Base…………………………………………....17

2.3 SNMP Protocol Operations………………………………………….18
Chapter 3: Limitation of Snmpv1………………………………………………..19
Chapter 4: Simple Network Management Protocol Version 2…………………...24

4.1 Structure of Management Information……………………………….24

4.2 Snmpv2 Macros……………………………………………………...25

4.3 Textual Conventions…………………………………………………27

4.4administrative Framework……………………………………………30


4.41 The Party Mechanism


4.4.2 The View Mechanism



4.4.3 The Context Mechanism



4.4.4 The Access Control Mechanism


4.5 Security Protocols……………………………………………………36

4.6 Protocol Operations………………………………………………….38

4.7 Transport Mappings………………………………………………….41

4.8 Conformance Statement……………………………………………...43

4.9 Coexistence with Snmpv1……………………………………………45
Chapter 5: Overview of Snmpv3……………………………………………...48
Chapter 6: Conclusion………………………………………………………..50
Bibliography…………………………………………………………………..51
Acknowledgement…………………………………………………………….52
KEYWORDS

Coexistence-Conformance –datatypes-Macros-MIB-Network management-PDU- proxies-security protocol-SNMP-SNMPV2-SNMPV3-textual conventions-transport mappings
ABSTRACT
The Simple Network Management Protocol is the most widely used protocol for the management of IP-based networks and internets. The original version, now known as SNMPv1, is widely deployed. SNMPv2 adds functionality to the original version but does not address its security limitations; this is a relatively recent standard. An effort is currently underway to develop SNMPv3, which will retain the functional enhancements of SNMPv2 and add powerful privacy and authentication features. This article provides a survey of the version 2 of SNMP, including a discussion of the way in which management information is represented and the protocol functionality with an objective to the find out the exact representation and working of the protocol. This article also presents some basics of network management and also an overview of SNMPV1 and SNMPV3.

CHAPTER 1

INTRODUCTION

The Simple Network Management Protocol (SNMP), issued in 1988, was designed to provide an easily implemented, low-overhead foundation for multivendor network management of routers, servers, workstations, and other network resources. The SNMP specification:

· Defines a protocol for exchanging information between one or more management systems and a number of agents 

· Provides a framework for formatting and storing management information

· Defines a number of general-purpose management information variables, or objects

The original version of SNMP (now known as SNMPv1) rapidly became the most widely used vendor-independent network management scheme. However, as the protocol gained widespread use, its deficiencies became apparent. These include a lack of manager-to-manager communication, the inability to do bulk data transfer, and a lack of security. All of these deficiencies were addressed in SNMPv2, issued as a set of proposed Internet standards in 1993.

SNMPv2 has not received the acceptance its designers anticipated. While the functional enhancements have been welcome, developers found the security facility for SNMPv2

too complex. Accordingly, the SNMPv2 working group was reactivated to provide a “tune-up” of the SNMPv2 documents. The result of this effort has been one minor success and one major failure. The minor success is the tune-up of the functional

aspects of SNMPv2. The major failure is in the area of security. The working group was unable to resolve the issue, and two competing approaches emerged. With this tune-up,

The functional portion of SNMPv2 progressed from proposed to draft Internet standard status as of 1996. Then, in 1997, work began on SNMPv3, which makes additional minor functional changes and incorporates a new security approach.

This article will provide a survey of SNMPv1 and SNMPv2, and a brief overview of SNMPv3. The article begins with a discussion of basic concepts common to all versions; these concepts define the network management framework that SNMP is designed to support. Then, the operation of SNMPv1 is described. Next, the functional enhancements found in SNMPv2 are discussed. A final section introduces SNMPv3.

NETWORK MANAGEMENT

Nowadays fast developing information technologies make networks more and more complex. We inevitably face a different challenge that how to contend with an ever broadening array of network resources. Network management is a critical solution to enhance the administrative productivity. It evolves making all the components in a consistent manner, monitoring network activity with an outdated protocol analyzer, coping with a distributed database, auto-polling of network devices, and generating real-time graphical views of network topology changes and traffic. In all network management is a service with very broad range that employs a variety of tools, applications and devices to assist network managers in monitoring and maintaining networks. 

MAIN FUNCTION OF THE NETWORK MANAGEMENT

According to the definition of Open Systems Interconnect (OSI), the main functions of the network management is FCAPS which is an acronym explained as below: 

· Fault management 

· Configuration management 

· Accounting management 

· Performance management 

· Security management 

The goal of fault management is to detect, log, notify users of, and (to the extent possible) automatically fix network problems to keep the network running effectively. Because faults can cause downtime or unacceptable network degradation, fault management is perhaps the most widely implemented of the ISO network management elements. Fault management deals with the events and traps as they occur on the network, according the related information saved in the Management Information Base to find the wrong point and solve the problems automatically.

Configuration management is perhaps the most important part of the network management because without the ability to manage the configuration of the network we can not realize the real network management. The goal of configuration management is to monitor network and system configuration information so that the effects on network operation of various versions of hardware and software elements can be tracked and managed. All network software and hardware configuration information should be store in a database which allow the dynamic updating and ease access.

Accounting management help we to measure network-utilization parameters so that individual or group uses on the network can be regulated appropriately. 
Performance management is to measure and make available various aspects of network performance to maintain the performance of network at an acceptable level. In the field of network management, there are no functional addresses of systems or applications performance management.
The main field of Security management is to monitor and control the access to network resources according to local guidelines so that sensitive network resources can only be accessed by right users. Most network management application only addresses security applicable to network hardware but not really deal with system security. 

REQUIREMENT OF NETWORK MANAGEMENT

Network management requires IT professionals to keep network available, run at peak performance, utilize network bandwidth efficiently and all while keep the total cost of network operations under control. 

First network management should have the most efficient utilization of the bandwidth of the network. The purpose of using network management system is to protect the most availability of the network and we can not suffer much band utilization of the management system which has bad influence to the application systems on the computer network. Second, network management would have to be extensible. The network architecture was being designed to allow the use of multiple modules that would provide the same or similar services at each layer and to simultaneously support multiple-layer protocols in a network. Therefore, the management architecture transparently assimilates new devices and technologies. The network management architecture had to become as extensible as the network architecture. Finally, since network layer was designed to be an open architecture, management of network layer components would have to be effective in a multivendor network. Our design had to ensure that the ability to provide effective management of network components was independent of the vendors supplying them. 

NETWORK MANAGEMENT ARCHITECTURE

The model of network management that is used for SNMP includes the following key elements:

· Management station

· Management agent

· Management information base

· Network management protocol

A Management station is typically a standalone device, but may be a capability implemented on a shared system. In either case, the management station serves as the interface for the human network manager into the network management system.

The management station will have, at minimum:

· A set of management applications for data analysis, fault recovery, and so on.

· An interface by which the network manager may monitor and control the network. That is, the interface between the user and the network management applications enables the user to request actions (monitoring and control) which are

carried out by the management station by communicating with the managed elements of the network. 

· A protocol by which the management station and managed entities exchange control and management information. 

· A database of information extracted from the management databases of all the managed entities in the network.

That is, the management station maintains at least a summary of the management information maintained at each of the managed elements in the network.

Only the last two elements are the subject of SNMP standardization. The other active element in the network management system is the management agent. Key platforms, such as hosts, bridges, routers, and hubs, may be equipped with SNMP agent software so that they may be managed from a management station. The management agent responds to requests for information from a management station, responds to requests for actions from the management station, and may asynchronously provide the management station with important but unsolicited information. In order to manage the resources in a network, these resources are represented as objects. Each object is, essentially,

A data variable that represents one aspect of the managed system. The collection of objects is referred to as a management information base (MIB). The MIB functions as a collection of access points at the agent for the management station; the agent software maintains the MIB. These objects are standardized across systems of a particular class (e.g., bridges all support the same management objects). In addition, proprietary

extensions can be made. A management station performs the monitoring function by retrieving the value of MIB objects. A management station can cause an action to take

place at an agent or can change the configuration settings of an agent by modifying the value of specific variables.

The management station and agents are linked by a network management protocol, which includes the following key capabilities:

· Get: enables the management station to retrieve the values of objects at the agent

· Set: enables the management station to set the values of objects at the agent

· Trap: enables an agent to notify the management station of significant events

There are no specific guidelines in the standards as to the number of management stations or the ratio of management stations to agents. In general, it is prudent to have at least

two systems capable of performing the management station function, to provide redundancy in case of failure. The other issue is the practical one of how many agents a single management station can handle. As long as SNMP remains relatively “simple,” that number can be quite high, certainly in the hundreds.

SIMPLE NETWORK MANAGEMENT PROTOCOL ARCHITECTURE

SNMP was designed to be an application-level protocol that is part of the TCP/IP protocol suite. As Fig. 1 illustrates, SNMP typically operates over the user datagram protocol (UDP), although it may also operate over TCP. For a standalone management station, a manager process controls access to the central MIB at the management station and provides an interface to the network manager. The manager process achieves

network management by using SNMP, which is implemented on top of UDP, IP, and the relevant network-dependent protocols (e.g., Ethernet, FDDI, X.25). Each agent must also implement SNMP, UDP, and IP. In addition, there is an agent process that interprets the SNMP messages and controls remote access to the agent’s MIB. For an agent device that supports other applications, such as FTP, TCP as well as UDP is required. From a management station, three types of SNMP messages are issued on behalf of a management application: GetRequest, GetNextRequest, and SetRequest. The first two are variations of the get function. All three messages are acknowledged by the agent in the form of a GetResponse message, which is passed up to the management application. In addition, an agent may issue a trap message in response to an event that affects the MIB and the underlying managed resources. SNMP relies on UDP, which is a connectionless protocol, and SNMP is itself connectionless. No ongoing connections are maintained between a management station and its agents. Instead, each exchange is a separate transaction between a management station and an agent.

The above concepts are illustrated in the following diagram:

[image: image1.png]SHMP managerrent station

GeRequest

Management application

GetResporse

Getoxiequest
Sotfoest

SNHIP manager

uor

Hotork deperent protocols

Sppicaion
artages ojects

El=——

P agant

SHMP managed objcts

GeRequest
Getoxiequest
Sotfoquest
Geesporse
Trn

P agant

wr

Hotuork deperdent protocols

NEF





SNMP ARCHITECTURE

TRAP-DIRECTED POLLING

If a management station is responsible for a large number of agents, and if each agent maintains a large number of objects, it becomes impractical for the management station to regularly poll all agents for all of their readable object data. Instead, SNMP and the associated MIB are designed to encourage the manager to use a technique referred to as

Trap-directed polling.

The recommended strategy is this. At initialization time, and perhaps at infrequent intervals, such as once a day, a management station can poll all the agents it knows of for

some key information, such as interface characteristics, and perhaps some baseline performance statistics, such as average number of packets sent and received over each interface over a given period of time. Once this baseline is established, the management station refrains from polling. Instead, each agent is responsible for notifying the management station of any unusual event. Examples are if the agent crashes and is

rebooted, the failure of a link, or an overload condition as defined by the packet load crossing some threshold. These events are communicated in SNMP messages known as traps.

Once a management station is alerted to an exception condition, it may choose to take some action. At this point, the management station may direct polls to the agent reporting the event and perhaps to some nearby agents in order to diagnose any problem and to gain more specific information about the exception condition. However, because traps are communicated via UDP and are therefore delivered unreliably, a management station may wish to infrequently poll agents. Trap-directed polling can result in substantial savings of network capacity and agent processing time. In essence, the network is not made to carry management information that the management station does not need, and agents are not made to respond to frequent requests for uninteresting information.

PROXIES

The use of SNMP requires that all agents, as well as management stations, must support UDP and IP. This limits direct management to such devices and excludes other devices, such as some bridges and modems that do not support any part of the TCP/IP protocol suite. Furthermore, there may be numerous small systems (personal computers, workstations, programmable controllers), that do implement TCP/IP to support their applications, but for which it is not desirable to add the additional burden of SNMP, agent logic, and MIB maintenance.

To accommodate devices that do not implement SNMP, the concept of proxy was developed. In this scheme an SNMP agent acts as a proxy for one or more other devices; that is, the SNMP agent acts on behalf of the proxied devices. Figure 2 indicates the type of protocol architecture that is often involved. The management station sends queries concerning a device to its proxy agent. The proxy agent converts each query into the management protocol that is used by the device. When a reply to a query is received by the agent, it passes that reply back to the management station. Similarly, if an event notification of some sort from the device is transmitted to the proxy, the proxy sends that on to the management station in the form of a trap message.

[image: image2.png]Proxy agent

station Mapping dlevice.
Manager process. Agent process. Management
pi=
s sur ot
st sed o
[ [ e architecture used
Ercrin
v w
[ree— [Ererase rrw—w— [Ev—
‘rotocpls r/\ ‘rotocas. ‘rotocnrs r/\ ‘rotocs
T T T





PROXY AGENT

CHAPTER 2

OVERVIEW OF SNMPV1

SNMP BASIC COMMANDS

Managed devices are monitored and controlled using four basic SNMP commands

1. Read

2.  Write

3.  Trap

4.  Traversal operations.

The read command is used by an NMS to monitor managed devices. The NMS examines different variables that are maintained by managed devices.

The write command is used by an NMS to control managed devices. The NMS changes the values of variables stored within managed devices.

The trap command is used by managed devices to asynchronously report events to the NMS. When certain types of events occur, a managed device sends a trap to the NMS.

Traversal operations are used by the NMS to determine which variables a managed device supports and to sequentially gather information in variable tables, such as a routing table.

SNMP MANAGEMENT INFORMATION BASE

A Management Information Base (MIB) is a collection of information that is organized hierarchically. MIBs are accessed using a network-management protocol such as SNMP. They are comprised of managed objects and are identified by object identifiers.

A managed object (sometimes called a MIB object, an object, or a MIB) is one of any number of specific characteristics of a managed device. Managed objects are comprised of one or more object instances, which are essentially variables.

Two types of managed objects exist:

1. scalar 

2. tabular.

 Scalar objects define a single object instance. Tabular objects define multiple related object instances that are grouped in MIB tables.

An example of a managed object is atInput, which is a scalar object that contains a single object instance, the integer value that indicates the total number of input AppleTalk packets on a router interface.

An object identifier (or object ID) uniquely identifies a managed object in the MIB hierarchy. The MIB hierarchy can be depicted as a tree with a nameless root, the levels of which are assigned by different organizations. Figure 56-3 illustrates the MIB tree.

The top-level MIB object IDs belong to different standards organizations, while lower-level object IDs are allocated by associated organizations.

Vendors can define private branches that include managed objects for their own products. MIBs that have not been standardized typically are positioned in the experimental branch.

The managed object atInput can be uniquely identified either by the object name?iso.identified- organization.dod.internet.private.enterprise.cisco.temporary variables.AppleTalk.atInput? or by the equivalent object descriptor, 1.3.6.1.4.1.9.3.3.1.

[image: image3.png]SBJECTHAMNG: WE:
RooT

e K somEDcT

T reafnn We o
o TN,

PN
caish

w0

I
ey




Figure: The MIB Tree Illustrates the Various Hierarchies Assigned by Different Organizations 

SNMP AND DATA REPRESENTATION

SNMP must account for and adjust to incompatibilities between managed devices. Different computers use different data representation techniques, which can compromise the capability of SNMP to exchange information between managed devices. SNMP uses a subset of Abstract Syntax Notation One (ASN.1) to accommodate communication between diverse systems.

SNMP VERSION 1

SNMP version 1 (SNMPv1) is the initial implementation of the SNMP protocol. It is described in Request For Comments (RFC) 1157 and functions within the specifications of the Structure of Management Information (SMI). SNMPv1 operates over protocols such as User Datagram Protocol (UDP), Internet Protocol (IP), OSI Connectionless Network Service (CLNS), AppleTalk Datagram- Delivery Protocol (DDP), and Novell Internet Packet Exchange (IPX). SNMPv1 is widely used and is the de facto network-management protocol in the Internet community.

SNMPv1 and Structure of Management Information

The Structure of Management Information (SMI) defines the rules for describing management information, using Abstract Syntax Notation One (ASN.1). The SNMPv1 SMI is defined in RFC 1155. The SMI makes three key specifications: ASN.1 data types, SMI-specific data types, and SNMP MIB tables.

SNMPv1 and ASN.1 Data Types

The SNMPv1 SMI specifies that all managed objects have a certain subset of Abstract Syntax Notation One (ASN.1) data types associated with them. Three ASN.1 data types are required: name, syntax, and encoding. The name serves as the object identifier (object ID). The syntax defines the data type of the object (for example, integer or string). The SMI uses a subset of the ASN.1 syntax definitions. The encoding data describes how information associated with a managed object is formatted as a series of data items for transmission over the network.

SNMPv1 and SMI-Specific Data Types

The SNMPv1 SMI specifies the use of a number of SMI-specific data types, which are divided into two categories: simple data types and application-wide data types.

Three simple data types are defined in the SNMPv1 SMI, all of which are unique values: integers, octet strings, and object IDs. The integer data type is a signed integer in the range of -2,147,483,648 to 2,147,483,647. Octet strings are ordered sequences of 0 to 65,535 octets. Object IDs come from the set of all object identifiers allocated according to the rules specified in ASN.1.

Seven application-wide data types exist in the SNMPv1 SMI:

1. network addresses

2.  counters

3.  gauges

4.  time ticks

5.  opaques,

6. integers

7. unsigned integers.

Network addresses represent an address from a particular protocol family. SNMPv1 supports only 32-bit IP addresses. Counters are non-negative integers that increase until they reach a maximum value and then return to zero. In SNMPv1, a 32-bit counter size is specified. Gauges are non-negative integers that can increase or decrease but that retain the maximum value reached. A time tick represents a hundredth of a second since some event. An opaque represents an arbitrary encoding that is used to pass arbitrary information strings that do not conform to the strict data typing used by the SMI. An integer represents signed integer-valued information. This data type redefines the integer data type, which has arbitrary precision in ASN.1 but bounded precision in the SMI. An unsigned integer represents unsigned integer-valued information and is useful when values are always non-negative. This data type redefines the integer data type, which has arbitrary precision in ASN.1 but bounded precision in the SMI.

SNMP MIB Tables

The SNMPv1 SMI defines highly structured tables that are used to group the instances of a tabular object (that is, an object that contains multiple variables). Tables are composed of zero or more rows, which are indexed in a way that allows SNMP to retrieve or alter an entire row with a single Get, GetNext, or Set command.

SNMPv1 Protocol Operations

SNMP is a simple request/response protocol. The network-management system issues a request, and managed devices return responses. This behavior is implemented by using one of four protocol operations: Get, GetNext, Set, and Trap. The Get operation is used by the NMS to retrieve the value of one or more object instances from an agent. If the agent responding to the Get operation cannot provide values for all the object instances in a list, it does not provide any values. The GetNext operation is used by the NMS to retrieve the value of the next object instance in a table or a list within an agent. The Set operation is used by the NMS to set the values of object instances within an agent. The Trap operation is used by agents to asynchronously inform the NMS of a significant event.

CHAPTER 3

LIMITATIONS OF SNMPV1

This chapter summarizes the deficiencies perceived in the SNMPv1 framework in the past years. 

The deficiencies that will be dealt with in this chapter are:

1. _ the severe security limitations,

2. _ the waste of bandwidth when retrieving large amounts of data,

3. _ there is no communication defined between managers,

4. _ the standards make minimal use of formal structures,

5. _ there are only very limited protocol operations available,

6. _ there is no uniform table accessing mechanism,

7. _ there are only a limited number of error codes defined

Security Limitations

The information added in the message consists of a version number and a group-identification key (called a community). The security mechanism that uses these communities is known as the trivial authentication mechanism. This means that the community name is placed, in the clear, in the message. This community name is used in the authentication mechanism to identify different parties. A community is defined to be a relationship between an agent and one or more managers. The agent uses the community name to grant the sending party certain privileges. Once a message is authorized, i.e. the sending party of a message uses a valid community name, the agent creates an access environment in which the request will be processed. Note that an agent does not validate whether the sending manager should be using this community. In fact, the identity of the manager is not checked at all!

This implies that knowing a valid community name is a potential dangerous situation. Since the community name is not encrypted, a straight forward eavesdropping tool could be used to discover this secret. Devin,  Galvin & McCloghrie (1991) identify the following threats:

_ Masquerade. The SNMP administrative model includes a model of access control. Access

control necessarily depends on knowledge of the origin of the message. The masquerade

Threat is the danger that management operations which are not authorized for some party,

may be attempted by that party by assuming the identity of an administratively distinct

party that is authorized for the management operation.

_ Modification of information. The SNMP protocol provides the means for management

stations to interrogate and to manipulate the value of objects in a managed agent. The

modification threat is the danger that some party may alter in-transit messages generated by an authorized party in such a way as to affect unauthorized management operations,

including falsifying the value of an object.

_ Disclosure of information. The disclosure threat is the danger of eavesdropping on the

exchanges between managed agents and a management station. Protecting against this

Threat is mandatory when the SNMP is used to administer private parameters on which its

security is based. (Protecting against this disclosure threat may also be required as a matter of local policy.)

_ Message sequencing. The SNMP protocol is based upon connection-less transport services. The message sequencing threat is the danger that messages may be arbitrarily re-ordered, delayed or replayed to effect unauthorized management operations. This threat may arise either by the work of a malicious attacker or by the natural operation of a sub network service.

_ Denial of service. The denial of service threat is the danger that an active eavesdropper will prevent exchanges between managed agents and a management station.

_ Traffic analysis. The traffic analysis threat is the danger that a passive eavesdropper will

infer information from the exchanges between managed agents and a management station, which may be protected from disclosure, to which the eavesdropper is not authorized.

From these definitions, it is clear that the trivial authentication mechanism used in SNMPv1does not provide any real protection against any of these threats.

Waste of Bandwidth

The SNMPv1 protocol consists of two retrieval operators, i.e. the get-request and the get-nextrequest. The get-request attempts to retrieve for every object identifier in the variable bindings list its value. If the agent does not support the variable (in that community view) or the object identifier does not identify a leaf object, the request will fail. The get-next-request on the other hand attempts to retrieve for every object identifier in the variable bindings list the name and value of the lexicographical successor. This request will only fail if there is no lexicographical successor (this is the case when the request addresses an object that exceeds the end of the MIB in that community view). Although the get-next-request is considered to be much more powerful than the get-request, both operators work sequentially on the variables identified in the variable bindings list. So if a manager wishes to retrieve an entire table from an agent it is faced with the problem that it

has to name every row instance it wants to retrieve. However, in most cases the manager does not know the name of every row instance. The only available solution is to successively use the get-next operator to retrieve the next row entry in the table.

No Communication Between Managers

Depending on the size of a network, one could want to divide the manager’s tasks over several management stations. Ideally one would want one high-level manager to which the other lower-level managers report only extra-ordinary events and status reports, thereby hiding unnecessary information from the high-level manager. This is extremely useful in a geographically diverse network, in order to minimize unnecessary network traffic. In the current framework however, this is not possible since communication between managers is not defined. It is only possible for a manager to communicate with several agents, and one agent can be managed by several managers. So the only means of structuring with the current framework is to have several managers each manage different aspects in several agents, which has no positive effect on network traffic. Moreover, there is no suitable mechanism defined that provides for multiple managers (nor agents as a matter of fact) to reside on the same platform. An additional problem is the excessive use of polling within the current framework, since the managers have to query their agents regularly in order to stay up to date. The use of traps by

agents to inform a manager of some situation is strongly discouraged and should only be used for exceptions, moreover its possibilities are rudimentary.

The Standards Use Few Structuring Techniques
Since one of the main goals of the SMNP standards is that they should be expandable in the future, the management framework has to provide the means to do this. This means that the management framework has to describe how additional information modules (MIBs) have to be structured. The contents, capabilities, compliance, etc. should be uniformly defined.

 Communication Between Managers

We already discussed the need for communication between managers. However no attention was paid on the kind of information that would be transmitted, nor on the

mechanism needed for the transmission of said information.  The manager that has the task of monitoring a set of agents will inform another manager if the information is of interest to said manager (e.g. because certain conditions have occurred). This way of providing information to a manager is slightly comparable to the trap, only now generated by another manager. However, traps were originally designed to indicate extra-ordinary events, and are therefore not suitable for use between managers. Besides, traps are always unconfirmed, whereas all other operations initiated by a manager are always confirmed. This suggests an additional protocol operation.

 No Uniform Table Accessing Mechanism

In general, accessing a table entry is no different from accessing an object identifier. The same set-request, get-request, and get-next-request operators have to be used to access the entry. It was already mentioned that although the get-request and get-next-request operator do not have any bugs, they are not efficient when retrieving large amounts of data. Problems do arise when creating, updating or deleting table entries, especially when multiple managers are involved. There was no mechanism defined to regulate multiple managers accessing the same entry.

 Limited Number of Error Codes

The original protocol defined only a few error codes (i.e. noError, tooBig, noSuchName,

badValue, readOnly1, and genErr). The return of one of these values was often ambiguous, thereby leaving the manager in the dark as to the cause of the error. In many cases the manager had to successively request parts of the original request, in order to discover the problem. It is clear that adding new error codes makes it much easier for a manager to understand what went wrong. In most cases the additional overhead in the agent is small, the state in the agent where the error occurred often contained all the information needed to result in a descriptive error code if it had been available.

CHAPTER 4

SNMPV2

 Structure of Management Information

This section describes the core of the definitions used to describe manageable information. This information is contained in RFC-1442. For naming all additionally defined objects a separate sub tree is defined for SNMPv21. This sub tree is administratively assigned as the sixth sub node under the internet node (see

figure). This node contains three sub nodes:

_ SNMP Domains, which is used to administer transport domains (see also section 4.5),

_ snmpProxys, which is used to administer transport proxy domains, and

_ snmpModules, which is used to administer module identities (see also figures 27, 31 and 19).

[image: image4.png]mamt

MBI

internet {136 1}

experimental  private

security  snm

snmphi

sules





Basic object identifier tree

 Type Definitions

Part of the definitions in the Structure of Management Information (SMI) document describes the primitive types that can be used to define objects. Most of these types were also available with SNMPv1, with one exception. The type BIT STRING is added in SNMPv2 as one of the so called SimpleSyntax types. These types are the most basic types, since they are built-in ASN.1 types. So now the following four SimpleSyntax types are defined:

_ INTEGER (-231 .. 231-1);

_ OCTET STRING;

_ OBJECT IDENTIFIER;

_ BIT STRING.

In addition there is the category of ApplicationSyntax types. These types are basic types with implicit semantics, but that can be deduced to one of the SimpleSyntax types. Some changes were made to these types as well. From practical experience, it became clear that some counters (using 32 bits) can wrap quite often. For this reason an extended counter type was introduced using 64 bits. So now the following eight ApplicationSyntax types are defined: 

_ IpAddress OCTET STRING (SIZE(4)) {Internet address in network byte order}

_ Counter32 INTEGER (0 .. 232) {counter that wraps}

_ Gauge32 INTEGER (0 .. 232) {counter that holds at upper bound}

_ TimeTicks INTEGER (0 .. 232) {hundredths of seconds}

_ Opaque OCTET STRING {only for backward-compatibility}

_ Nsapaddress OCTET STRING (SIZE(1|4 .. 21)) {for OSI NSAP addresses}

_ Counter64 INTEGER (0 .. 264) {if a Counter32 would wrap within an hour}

_ UInteger INTEGER (0 .. 232) {an unsigned 32-bit quantity}

SNMPv2 Macros

One of the capabilities of ASN.1 is the definition of macros. A macro is a template that can be user-defined so that it contains a set of clauses that together describe a semantical unit (a semantical unit can be seen as a set of independent parts of information that when put together fully describe some concept). The clauses of a macro can be constructed using sub-clauses and choices between sub-clauses. A special clause is a pre-defined ASN.1 clause named ‘empty’. A clause constructed of a choice between this empty clause and some sub clause implies an optional clause (see the RevisionPart in figure 8).

An invocation of a macro guides and restricts the information that can be supplied to describe something, according to the rules enforced by that macro. The macro concept is also described in Rose (1991).

This SMI defines four macros for use in defining information modules (MIBs):

_ a module identity macro (defines the MIB);

_ an object identity macro (can be used to define branches of an object identifier tree);

_ an object type macro (defines the leaves of an object identifier tree);

_ a notification type macro (defines groups of information for informing purposes1).

[image: image5.png]MIB





When defining a new information module (i.e. a MIB), or revising an existing one, may be convenient to register information about this module for future reference. The MODULEIDENTITY macro provides for this. It allows for the description of various categories of interesting information.

As mentioned earlier, two macros are defined related to the definition of objects. One is used for describing sub nodes (i.e. branches of an object identifier tree) only. Thereby providing some additional information on the intentions of defining a sub-tree. This information would otherwise be described in commentary text. This macro, called OBJECT-IDENTITY macro, contains three clauses of which one is optional 

The second macro defined to describe objects is the OBJECT-TYPE macro (see figure). This macro is used to describe the actual objects, i.e. leaf-objects. The information that can be described for these objects is also more extended compared with the information available on sub-nodes. The OBJECT-TYPE macro contains a total of eight clauses. Of these clauses, four are mandatory, and four are optional.

Finally, the fourth macro, the NOTIFICATION-TYPE macro, can be used to describe

notifications. Notifications consist of a group of objects that together contain information that is of interest when a certain condition occurs. These notifications can be send to those entities that are interested in such information.

Textual Conventions

The RFC-1443 (Textual Conventions) describes a new way to define ASN.1 types with the same capabilities as the underlying basic type, yet with extended semantics. These new types are called textual conventions, since they enhance the readability of MIBs for humans by the textual definition of conventions for semantic enriched data-types. These textual conventions can be defined by the use of a macro.

The ASN.1 language contains a large set of data types, and some mechanisms that allow the definition of user-defined types. However, SNMPv2 (just like SNMPv1) restricts the capabilities of ASN.1 to the use of only a limited set of types (see section 4.1.1). So additional data types can only be defined in a layer on top of the SNMPv2 protocol, and can only be transmitted using a mapping on an underlying primitive type that is part of the subset of ASN.1 that SNMPv2 uses. This is exactly what textual conventions do. They are defined at an entity to entity level on top of SNMPv2.

The definitions of textual conventions are related to object definitions. When an entity receives an object it has to check locally whether a textual convention is defined for it or not. If so, it has to add semantics to this object locally. This implies that if one of the entities in a communication is unaware of the definition of a textual convention for some object, the additional semantics can not be used.

As an example, this figure shows that on top of the layer defined in the protocol operations standard (RFC-1448) another virtual layer could be viewed. Note that the standards do not actually describe such a level, or the suggested name of that

protocol, however it gives a clear view of the functionality of textual conventions. The OID registers for which object identifiers a textual convention is defined, while the TCD keeps track of the definitions for textual conventions. When an object with

a textual convention is to be transmitted using SNMPv2, the TCD will provide the necessary information on the mapping to one of the primitive data types. Similarly, when an object is received (using of course a primitive data type), the OID could

be consulted to check if a textual convention is defined for it. If so, the TCD will be consulted to add the semantics to the object.

[image: image6.png]entity-entity
Tiextual conventions)

jectIdentiier Database

Textual Canventions Database





The definition of a new textual convention can be accomplished by invoking a textual

conventions macro. The use of a macro ensures that all textual conventions share a common structure. 

The following table summarizes these pre-defined textual conventions.

[image: image7.png]NAME

TYPE

DESCRIPTION

Displaystring
PhysAddress
MacAddress
TruthValue
TestAndlner

AutonomousType
InstancePointer

RowsStatus

TimeStamp
Timelnterval
DateAndTime

OCTET STRING (SIZE (0.259))
OCTET STRING

OCTET STRING (SIZE (8))
INTEGER | true(1), fakse(2) )
INTEGER (0.2147483647)

OBJECT IDENTIFIER
OBJECT IDENTIFIER

INTEGER {

active(l), notInService(2),
notReady (3), createAndGo(d),
createAndWait(5), destroy(6) |

TimeTicks
INTEGER (0.2147483647)
OCTET STRING (SIZE (8 | 11))

Tepresents textual Information
media- or physicablevel addresses
502 MAC-layer address

boolean value

integer-valued information used for
atomic operations

independently extensible type
pointer to a specific instance of a row

used to foster states in the creation,
updating and deleting phases of a row

Value of MIBHT's sysUpTime
period of time in unis of 0.01 seconds

date-time specification





Of these textual conventions, the RowStatus offers a clear functional extension to SNMPv2 with regards to SNMPv1. It provides a uniform mechanism for the manipulation of conceptual rows. Basically it offers state information on instances of conceptual rows, together with extended error functionalities so a manager can effectively manipulate rows. Since SNMPv1 totally lacked such a mechanism1, some attention will be spend on the ideas of this textual convention.

As table 1 shows, there are six values defined for the RowStatus. These values fall into three categories: states, actions, or both. The difference between states and actions is that states can be read by a manager (via a get-request command), while actions can be initiated by a manager (via a set-request command). And an action can bring some row from one state into another. The values “active” and “notInService” are states as well as actions. This implies that these values may be either read by a management operation (to indicate the state of the row) or written by a management operation (to accomplish the transition of the row to this state). The value “notReady” is a state only, so it can only be read by a management operation. The remaining values, “createAndGo”, “createAndWait” and “destroy” are actions only, so they can only be written by a management operation. Summarized, there are three states (for existing rows) and five actions (on the row status itself) defined. 

Administrative Framework

The administrative framework consists of an administrative model (RFC-1445), a party MIB (RFC-1447), and the currently defined security protocols1 (RFC-1446).

The administrative model (see section 4.3.1) defines a model which allows access control, authentication and encryption to be defined separately. The party MIB (see section 4.1.2) defines the administration needed for both the administrative model and the security protocols. The security protocols (see section 4.3.3) define the protocols that are currently available for authorization and encryption purposes. Note that in the future other protocols could be defined that either augment or substitute these protocols, without changing the framework.

 Administrative Model

This section will describe the model that regulates the receiving and transmitting of SNMPv2 messages. The model consists of a protocol on the one hand, and SNMPv2 entities on the other, where an entity is defined as a system capable of transmitting and accepting SNMPv2 messages. These messages are of course transmitted using the protocol. Within an entity various constructions are defined for access control and security control.

These constructions are:

_ the party mechanism;

_ the context mechanism;

_ the view mechanism;

_ the access control mechanism.

Together these mechanisms constitute a kind of filter between the variable processing part of the entity and the network. These mechanisms will be described in the above order.

Party Mechanism

A party is a virtual execution context solely for the transmission of messages. Each SNMPv2 entity (see figure 15) contains various parties, using possibly different transport services (at the moment four transport services are defined, see section 4.5). Each party uses only one transport address, but several parties might use the same transport address. So communication between entities will take place by identifying both a source and a destination party. Related to the parties are also the mechanisms for authentication and privacy. This means that messages are coded according to parameters related to both source and destination parties. In general, information (i.e. keys) about the source party is used for authenticating the message, while information about the destination party is used for encryption of the message. For this reason, every entity maintains a local database with information about both local and remote parties known to it. Which party is actually allowed to communicate with which remote parties is a matter of access control.

[image: image8.png]SHMPY2 SNMPy2 SHUPy
enity 1 entity 2 enity 2





PARTY MECHANISM

Context Mechanism

Whereas the party mechanism focuses on the transmission of an operation, the context

mechanism is a virtual execution environment directed towards the execution of the operation. So, if an entity wishes to communicate with another entity using any of SNMPv2’s operations, it has to provide a context for remote processing purposes. For this reason, every entity maintains a local database with information on both local and remote contexts known to it. The local contexts are used by the local entity itself to create a local processing context for received messages, while the remote contexts are used by the local entity to request the desired processing context in the remote entity.

When a context is realized locally, the entity can access the associated resources either direct or indirect via a proxy relationship. If the resources have to be accessed through a proxy relationship then new source and destination parties are provided (possibly using another transport service) as well as a proxy context. In the case of a proxy relationship with another SNMPv2 entity, the proxy context has a similar meaning as a normal context. Otherwise, interpretation depends on the protocol being used. If the resources can be accessed directly, then the context selects one of the virtual duplications

of the MIB. Since the naming of variables is defined in a unique manner (using object

identifiers), there is no way to identify various duplications of the same object using the normal naming strategy. For this reason two fields are related to a context that allow for the coexistence of several representations of the same MIB. Using these fields, a division in time and space can be made, as figure 16 shows. The initial set of possible time domains is registered under the temporalDomains sub node of the party MIB (see figure 19). These time divisions can be used to identify the value of a variable at several moments in time. The possible space divisions (known as local entities) can not be defined in the general framework since they differ for each information module. Therefore each context relates to an associated field of type OCTET STRING to allow the flexible definition of names for each local entity. 

As an example, consider an agent that implements a MIB for a router. If this agent

is to collect management information for several routers, then each router would

require a copy of the same router-MIB. Using the described mechanism, the agent

could implement these copies and supply access to them through different

contexts. These contexts differ in their value of contextLocalEntity (e.g. “Router1”,

“Router2”, etc.). So using a different context results in distinct values of the same

object for each device.

Note that implementations need not support all of these possibilities. A minimal agent

configuration might support only one single representation of a MIB (e.g. the time domain refers to localTime, and the local entity refers to an empty string). It is important to understand that all these virtual planes are representations of the same MIB, they merely contain distinct sets of values for all of the objects. (The names for the local entities are chosen arbitrarily.) 

[image: image9.png]restartTime.

cachaTime N N
curmntTime \.
. .
£ : ocal aniy 1 Tocal ntty 2.





CONTEXT MECHANISM

View Mechanism

The view mechanism, which was already present in SNMPv1, regulates the observable objects to any operation. Basically, a view places a stencil over the object identifier tree, which hides parts of the tree. Applying such a view results in the object identifier tree that is accessible by the requested operation. Figure 17 shows an arbitrary view placed over a MIB, where the shaded part is invisible to any operation.

[image: image10.png]



VIEW MECHANISM

Note that so far we have focused on the accessible objects in general only, without relating this to a particular operation. (Remember that SNMPv1 integrated this with the community concept.) In practice it would be desirable to define this kind of access control separate from both views and contexts. Therefore a separate mechanism is defined, which will be introduced next.

Access Control Mechanism

In order to provide for the most flexible way of defining access control, a table is defined

indexed by the source party, the destination party, and the context. This implies that for every such a combination the set of permitted operations can be defined separately.

As an example of the flexibility this mechanism offers, let us look at a hypothetical

situation. Suppose an agent contains a MIB with some sub tree named X. Now

assume the responsible management station wants to impose rigid access control

on this sub tree. To do this it would first create some views that either include or exclude X. For those views that include X, it could define some contexts that allow only reading (e.g. get-request, get-next-request & get-bulk-request) for this view, and some other contexts that allow modification (e.g. set-request). For these latter contexts the manager would allow access only by a limited set of parties. In addition these parties could be defined so they would all have to use authentication, and possibly even encryption.

This example shows that access control can be defined quite flexible using these mechanisms.

The Complete Model

In the four previous sections the party concept, the context concept, the view concept, and the access control concept were introduced rather independently at first. Now these concepts will be combined into one model.

The figure shows the relation between parties, contexts, and views. In this example a proxy relationship is shown as well, using a proprietary protocol. In this case the interpretation of the proxy context by the remote entity is dependent on the protocol.

[image: image11.png]



Parties, contexts and views

At the sending entity no local context is used, but the message references a remote context. The message will then be processed by one of the source parties, which uses the same security mechanisms as the remote party. The receiving entity will decrypt the received message using the destination party identified in it.

Security Protocols

The security protocols that are described in RFC-1446 are based on two well-known

algorithms, i.e. the Message-Digest algorithm (MD5), and the Data Encryption Standard (DES).Both mechanisms have a solid mathematical background, and extensive experience has been gathered in practice. For more information on these mechanisms the reader is referred to Davies & Price (1989).

These mechanisms provide protection against the following threats:

_ Masquerade. The SNMP administrative model includes a model of access control. Access control necessarily depends on knowledge of the origin of the message. The masquerade threat is the danger that management operations which are not authorized for some party, may be attempted by that party by assuming the identity of an administratively distinct party that is authorized for those management operations.

_ Modification of information. The SNMP protocol provides the means for management

stations to interrogate and to manipulate the value of objects in a managed agent. The

modification threat is the danger that some party may alter in-transit messages generated by an authorized party in such a way as to affect unauthorized management operations,

including falsifying the value of an object. 

_ Disclosure of information. The disclosure threat is the danger of eavesdropping on the

exchanges between managed agents and a management station. Protecting against this

threat is mandatory when the SNMP is used to administer private parameters on which its

security is based. (Protecting against this disclosure threat may also be required as a matter of local policy.)

_ Message sequencing. The SNMP protocol is based upon connection less transport services. The message sequencing threat is the danger that messages may be arbitrarily re-ordered, delayed or replayed to effect unauthorized management operations. This threat may arise either by the work of a malicious attacker or by the natural operation of a sub network service.      

The masquerade and the message sequencing threats are dealt with by using time stamps, and the MD5 algorithm to compute a digest. The modification of information, and disclosure of information threats are dealt with by the DES encryption mechanism.

The combination of MD5 and DES will be used in this order only, since one would want to transmit the encrypted data over the network. The global functioning of these mechanisms will now be described.

When a PDU is to be transmitted, a so called SNMPv2 management communication

(SnmpMgmtCom) is constructed containing this PDU and object identifiers to reference the source and destination parties and the required context. The decision of which parties and context to use is a matter of local policy.

If the source party requires the use of an authentication mechanism, then the SnmpMgmtCom is appended with time stamps for both the source and destination party. Using the private authentication key of the source party, a digest is computed of the obtained sequence, using the authentication mechanism MD5. This digest will be appended to the original sequence to form a modified sequence that is called a SNMPv2 authenticated management communication.

Depending on the requirements of the destination party, this sequence might subsequently be encrypted using the privacy mechanism DES. From the local database the private privacy key of the destination party is obtained. Using this key the previous sequence is encrypted resulting in a new sequence which will be pre-fixed with the un-encrypted object identifier of the destination party. This is needed so the receiving entity can look up the party secrets defined for that party, so it can decrypt the received message correctly. 

Protocol Operations

The protocol operations (RFC-1448) described here are to a large extending modifications of the protocol operations available with SNMPv1. The main concept has remained unchanged. The general idea of SNMP is to provide a mechanism for the transfer of management information. For this reason two types of roles for entities were defined, i.e. managers and agents, and between these entities information transfer is defined. Agent entities reside near the source of the information, i.e. at the managed device, and are able to gather and transmit information at the request of a manager. Typically, agents reside on every device that is to be managed. Manager entities are less numerous, and are used to collect information from various agents in order to present a total picture of the functioning of a set of resources. The collecting of information is achieved by (periodically) sending requests to the agents. Thus a separation of functionality is achieved. The managers perform various complex tasks like analyzing data and determining resulting actions to be carried out by the agents, whereas agents need only perform relatively simple tasks, like information gathering and process sing of incoming requests.

In the communication between a manager and an agent, three services are available, namely Gets, Sets, and Traps. Both Gets and Sets can be requested by a manager and are to be confirmed with a Response by the agent. The Trap however, can only be transmitted from an agent to a manager and is unconfirmed. Just as in SNMPv1, Gets come in sorts. In SN MPv1only a Get and a GetNext was available, with SNMPv2 a new type of get is introduced called the GetBulk. This operator allows a manager to retrieve potentially large amounts of data in a single request.

[image: image12.png]MANAGER AGENT

GetRequest  —w
texiRequest
{BukRequest
SetRequest =

-
—=

- SNLP2-Trap





A new feature in SNMPv2 is the ability for managers to communicate with other managers. For this a new service was defined via the InformRequest-PDU. This confirmed service can be used for managers that monitor a given set of agents to notify other managers of certain events.

.

[image: image13.png]MANAGER MANAGER

InformRequest





In all of the confirmed services, the receiving entity is required to send a response, but since SNMP is almost always mapped on an unreliable transport service, messages might get lost. In any of these cases retransmission is left to the managing entity. The communication services described in figures 21 and 22 are descriptions of the protocol

services offered by SNMPv2. These services will thus be mapped on a PDU structure. Most of the above mentioned operations make use of the same PDU structure1 as figure 23 shows, except for the GetBulkRequest-PDU which uses a slightly modified version of this type (not in the structure, but in the meaning of some of the values).

[image: image14.png]GetRequestPDU ==
GetNextRequest-PDU =
Respanse-PDU =
SelRequest- PDU =

GetBulkRequestPDU =

InformRequestPDU =

SNMPY2Teap-PDU 2=

9] IMPLICIT PDU
1) IMPLICIT PDU

[2) IMPLICIT PDU

3] IMPLICIT PDU
 [4]is obsolete

5] IMPLICIT BulkeDU
6] IMPLICIT PDU

I

] IMPLICIT PDU





The general PDU type integrates all the fields that are necessary for the individual operations. As a result, not all of its components are meaningful to every operation. Therefore, every operation will ignore some of the components (or values of components) defined in the general PDU type. For the complete structure see figure 24. In the sequel of this section the PDUs will be covered individually. At that time it will become more clear which components are actually used by each protocol operation.

[image: image15.png]Verson Commurity ]

o0 SHP message

PoUbpe | requestia o 0 varable bindings

b) GotRocquest PDU, GetextRocqiest PDU, SetRequest PDU, SNMPy2 Trap PO, Infor mRcquest PDU

POUGpe | roquestid | errorstaws | emorindex varable bindings

©) GeResponss PO

PoUpe | rouestia | nomepeaters | T8 vaable bindings
@) GetBuRequest PO

PoUpe | enverpie | ogeraadr | _gmericiap | specictuan | tmestomn | varablebicings
e S T P

1) variable bincings





SNMPV2 PDUS

 Transport Mappings

At the time of its introduction SNMPv1 was intended to use the User Datagram Protocol (UDP) for the underlying transport facilities. Once the popularity of SNMPv1 increased mappings to other popular connection less transport protocols, and even to a connection oriented transport protocol, were defined. So now, with SNMPv2, a total of five transport services may be used, as defined by RFC-1449:

_ UDP (User Datagram Protocol, developed by the Internet community);

_ DDP1 (Datagram Delivery Protocol, developed by Apple Computer Inc.);

_ IPX (Internet Packet eXchange, developed by Novell Inc.);

_ CLNS (Connection Less Network Service, developed by OSI);

_ CONS (Connection Oriented Network Service, developed by OSI).

The mappings to these transport protocols are referenced by an object identifier (called a

transport domain). These transport domains are registered as sub nodes of the   snmpDomains node (see figure 6), and are called:

_ snmpUDPDomain;

_ snmpDDPDomain;

_ snmpIPXDomain;

_ snmpCLNSDomain; and

_ snmpCONSDomain.

However, the mapping on UDP is still the preferred one. Each SNMP message is mapped on a single UDP datagram. For SNMP, two well known UDP ports are reserved. Port 161 should be used by entities acting in an agent role to listen for requests, while port 162 should be used by entities acting in a management role to listen for notifications (traps and informs). However implementations are not restricted to the use of these ports. In general, the party table is used to determine the actual transport addresses for each party.

This RFC defines for each transport mapping the well-known ports, the addressing and the serialization (i.e. encoding). These topics will not be discussed here, since these optional transport mappings are of minor interest to SNMP itself. However, one additional transport domain is worth noting. This domain is called rfc1157Domain (registered as a sub node of the snmpProxys node, see figure 7) and indicates the transport mapping for SNMPv1 messages defined in RFC-1157. Typically this domain is

used for proxy relationships to equipment that is still using SNMPv1.

 Management Information Base for SNMPv2

The Management Information Base for SNMPv2 (RFC-1450) contains an addition to the basic collection of manageable objects available in every agent (currently described by MIB-II). As we will see later, these objects describe the behaviour of an entity.

[image: image16.png]smphlodues

Smphia (1)
smpObjacts sompHIEConfomnce
sompSials sampV1 SITPOR. snmpTiap snmpTraps smpSel  snmpMEComplancas  snmpEgraups.
snmpMEComplanca





The snmpStats group contains a collection of objects providing basic statistical information on the functioning of a SNMPv2 entity. These objects are directly related to conditions that occur during the evaluation of incoming messages. The use of these objects is therefore described in RFC-1445 (the Administrative Model for SNMPv2.. As Figure shows, packets that are received can be discarded due to various reasons resulting in the incrementing of the appropriate counter. 

The figure should be read bottom-up, which means that all the packets received from the underlying layer are counted by the snmpStatsPackets counter, and if they pass various tests they may finally be delivered to the SNMPv2 application.

 Conformance Statements

Conformance statements are used to align MIB-definitions and MIB-implementations. They are used on the one hand to describe the minimal required level of support1 for a module (e.g. some objects may be omitted, while other may have a reduced access level). If an agent implementation wishes to claim support of an information module, it has to comply at least with these minimal conformance statements. On the other hand do agent implementations whish to advertise which information modules they support, and perhaps what modifications apply to some of the objects. For both these purposes, the conformance statements can be used. Conformance statements can be made by invoking a macro that allows the description of requirements or capabilities. RFC-1444 defines three macros that are used to describe these conformance statements. These macros are called: 

_ OBJECT-GROUP macro;

_ MODULE-COMPLIANCE macro;

_ AGENT-CAPABILITIES macro.

These macros will now be described in the following sub sections.

Object Group Macro

The unit used in conformance statements is the object-group. The OBJECT-GROUP macro is used to describe these groups, conveys information about the objects that are included in the group as well as a description of relations to other groups. The objects in a group need to be related, since they are either included in or excluded from an implementation as a whole. As an example, consider the definition of the most elementary group defined in MIB-II, the system group.  According to this invocation, the conformance group named systemGroup  contains 7 objects. So if this group is used in a conformance statement, then all these objects are either included in or excluded from an implementation as a whole. As we will see later, this group must be included in every implementation. systemGroup OBJECT-GROUP

Compliance Macro

In the design of a MIB module a mechanism is needed to describe which of the groups that are defined in that information module are mandatory, and for which groups including is only mandatory when certain conditions apply in the implemented configuration. This way a manager knows what to expect when an agent claims to implement an information module. For this reason the MODULE-COMPLIANCE macro is defined. Use of this macro is required for all standard MIB modules.

Agent Capabilities Macro

While the MODULE-COMPLIANCE macro defines the requirements for claiming compliance to MIB modules, a counter-part for agents to describe their capabilities is also necessary. Therefore, the AGENT-CAPABILITIES macro was defined see figure 38. An invocation of this macro describes how the information modules that it claims to support are actually implemented.

 Coexistence with SNMPv1

Finally, some attention will be devoted to the interworking of SNMPv2 with existing SNMPv1 implementations and definitions. Since the management framework defines both a protocol as well as the definitions of manageable information, coexistence problems arise in two areas. On the one hand will new implementations have to inter-work with existing agents that can only communicate using SNMPv1. On the other hand will MIB definitions that were made using the SNMPv1 framework (notably RFC-1157) have to be redefined for use with the new management framework. Both these topics are dealt with in RFC-1452 (Coexistence between SNMPv1 and SNMPv2) and will be covered briefly in the following sub sections. 

 Management Information

Since the introduction of SNMPv1 in 1987 many vendors have defined MIBs for their products. If those MIBs are to be used with SNMPv2 as well, some changes will have to be made. Since RFC-1442 (see section 4.1) defines new conventions for the definitions of MIBs, existing MIBs will have to be made conformant to these new structuring rules (i.e. the macros defined in RFC- 1442 will have to be used).

The changes that are necessary concern the following topics:

_ object definitions;

_ trap definitions;

_ compliance statements;

_ capability statements.

Most changes that are necessary, when converting a MIB module, concern the object

definitions. Note that if the semantics of objects changes, then those objects would have to be deprecated, but the conversions that are required here generally do not change semantics. Most changes relate to the formalization of conventions that were already used in practice. One of the necessary changes involves the invocation of the MODULE-IDENTITY macro at the beginning of a MIB module. Other changes are listed exhaustively in RFC-1452. Whenever traps are defined using the TRAP-TYPE macro, their occurrences will have to be replaced by an invocation of the NOTIFICATION-TYPE macro. The differences between the two macros are dealt with in RFC-1452.

For standard information modules, a corresponding invocation of the   DULECOMPLIANCE macro is mandatory. In addition, any commentary text which relates to compliance statements will have to be removed. If a MIB makes use of the MODULE-CONFORMANCE macro (defined in RFC-1303, which is informational), such an occurrence will have to be replaced by an invocation of the  GENTCAPABILITIES macro defined in the new framework. Otherwise such an invocation will have to be added. Some small differences exist between these two macros, for details see RFC-1452. 

 Protocol Operations

In order to achieve coexistence at the protocol-level, SNMP introduces the proxy mechanism. With SNMPv2, the proxy mechanism can be used in two ways:

_ the proxy agent behavior;

_ the bi-lingual manager behaviour.

These mechanisms will be briefly explained.

Proxy Agent Behaviour

One way to translate SNMPv2 requests into SNMPv1 requests is by using a proxy agent. This means that a SNMPv2 entity in an agent role can receive SNMPv2 operations and will translate them into SNMPv1 operations. In the case of a GetRequest, GetNextRequest, or SetRequest no alteration to the PDU is needed. Since SNMPv1 does not contain a GetBulkRequest, this PDU will be converted into a GetNextRequest.

Of course the reverse process has to be performed as well. This means that messages from a SNMPv1 entity acting in an agent role have to be translated by the proxy agent into SNMPv2 messages for communication with the remote SNMPv2 manager. In the case of a ResponseRequest, alteration is only necessary in case of a tooBig error, in which case the variable-bindings list will be removed. If a Trap-PDU is received, it will be mapped on a SNMPv2-Trap-PDU. Since the wrapping and encoding conventions of messages differ between SNMPv1 and SNMPv2, proxy agents will always have to decode incoming (SNMPv2 c.q. SNMPv1) messages up to the protocol-level (to reveal the original PDU) and encode them into outgoing (SNMPv1 c.q. SNMPv2) messages using the appropriate techniques. 

Bi-lingual Manager Behaviour

Another way for management applications to communicate with agents of both versions is to have a protocol entity acting in a manager role implementing both SNMPv1 and SNMPv2. Requests from a management application can then be transmitted in two forms by the protocol entity, dependent on locally available information about the requested agent.

CHAPTER 5

OVERVIEW OF SNMPV3

In September 1996, the IETF formed an advisory committee to analyze the competing proposed approaches to SNMP security. In early 1997, this committee produced a white paper describing SNMPng, or next generation SNMPng includes the functionality

of SNMPv2 and incorporates security features found in the proposed security approaches. With further refinement and implementation experience, SNMPng is intended

to become SNMPv3. To that end, the Internet Engineering Task Force (IETF) chartered a SNMPv3 working group to prepare RFCs for SNMPv3. The working group has produced a set of Internet Drafts (available at http://www.ietf.org/Html.charters/snmpv3-charter. html). The group expects to produce RFCs by the end of 1997, with a goal of submitting a complete set of SNMPv3 specifications for consideration as Proposed Standards by April 1998. Products based on SNMPv3 are likely to become available in 1998.

 SNMPv3 consists of three modules. The Message Processing and Control module handles SNMP message creation and parsing functions, and also determines if proxy handling is required for any SNMP message. The Local Processing module performs access control for variable binding data, processing that data, and trap processing. The Security module provides authentication and encryption functions, and checks the timeliness of certain SNMP messages.

The most substantial improvement SNMPv3 offers over SNMPv1 and SNMPv2 is the addition of security features. These deals with one of the major concerns that users of SNMP have expressed: its lack of effective security. Specifically, users want

to know that only authorized personnel are able to perform network management functions (e.g., disable/enable a line) and that only authorized personnel are able to read network management information (e.g., contents of a configuration file).

The three new security features provided by SNMPv3 are:

1. authentication

2.  secrecy

3. access control.

 Authentication enables an agent to verify that an incoming command is from an authorized manager and that the contents of the command have not been altered. To achieve this, each manager and agent that wishes to communicate must share a secret

key. The manager uses this key to calculate a message authentication code which is a function of the message to be transmitted and appends that code to the message.

When the agent receives the message, it uses the same key and calculates the message authentication code once again. If the agent’s version of the code matches the value appended to the incoming message, then the agent knows that the message can only have

originated from the authorized manager, and that the message was not altered in transit.

The secrecy facility enables managers and agents to encrypt messages to prevent eavesdropping by third parties. Again, manager and agent share a secret key.

In this case, if the two are configured to use the secrecy facility, all traffic between them is encrypted.

 Finally, the access control facility makes it possible to configure agents to provide different levels of access to different managers. Access can be limited in terms

of the commands the agent will accept from a given manager and also in terms of the portion of the agent’s MIB a given manager may access. The access control policy to be used by an agent for each manager must   be preconfigured and essentially consists of a table that details the access privileges of the various authorized managers.

With these new security features, network managers should have a much greater comfort level in using SNMPv2, particularly in large installations and/or those with a large user population. 

CONCLUSION

SNMPv2 is a substantial improvement over SNMPv1,while retaining its essential character of ease of understanding and implementation. Version 2 provides better

support for a decentralized network management architecture, enhances performance, and provides a few other bells and whistles of interest to application developers.SNPMV2 

tries to fix most of the problems of the initial version of the simple network management protocol and seems to successful in that but the most obvious flaw in this version is the security and thus created the necessity for a enhanced version .i.e.  SNMPv3. still SNMPv2 is a powerful and hence simple network management protocol which will it’s place in due course of time with improvements in the security department .SNMPv3 fixes the most obvious failing of versions 1 and 2: lack of security. There is now, at last, a worthy successor to SNMPv1, and the new standard should succeed in the marketplace. Vendors are likely to adopt the new version to provide more features and more efficient operation to their users. Also, we can expect additional MIBs to be defined within the SNMPv3 framework to extend its scope of support various network management applications .
BIBLIOGRAPHY

1  W. Stallings, SNMP, SNMPv2, and RM
ON: Practical Network Management,

2nd ed., Reading, MA: Addison-Wesley, 1996.

2      M. Rose, The Simple Book: An Introduction to Network Management,

3rd ed., Upper Saddle River, NJ: Prentice Hall, 1996

3. http:// ietf.org/html.charters/snmpv3-charter.html.

4. http:// ietf.org/html.charters/rmonmib-charter.html.

5. http://www.ibr.cs.tu-bs/projects/snmpv3
6. http://simple-times.org
7. http://www.snmpv2.com
8. http://ww.snmp.cs.utwente.nl
9. http:// netmn.cit.buffako.edu/index.html

10. http://www.nmf.org
11. various rfcs relating to the snmpv1,snmpv2,snmpv3

ACKNOWLEDGEMENT

I am very grateful to Ms K.N. JARIWALA, my guide for this seminar, for her guidance and without whom this seminar would not have been possible. I thank for her patience and commitment in helping me throughout this seminar. I would also like to acknowledge all my friends and well wishers for their support.







SREERAM I PETHI








BE IV CO







SVNIT 








SURAT

PAGE  
1

