SUBJECT CODE:07MCA56 SOFTWARE DESIGN LAB USN:1OY09MCA04
__

1. EXPERT DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Problem:

What is the most basic principle by which responsibilities are assigned in object-oriented design?

Intent:

The Information Expert pattern is a solution to the problem of determining which object should assume a particular responsibility.

Discussion:

Assign a responsibility to the class that has the information necessary to fulfill the responsibility. A Design Model may define hundreds or thousands of software classes, and an application may require hundreds or thousands of responsibilities to be fulfilled. During object design, when the interactions between objects are defined, we make choices about the assignment of responsibilities to software classes. If we’ve chosen well, systems tend to be easier to understand, maintain and extend and choices afford more opportunity to reuse components in future applications.

Example:

A Point Of Sale(POS) system is a computerized application used (in part) to record sales and handle payments; it is typically used in a retail store. It includes hardware components such as a computer and bar code scanner, and scanner to run the system. It interfaces to various service applications such as a third-party tax calculator and inventory control.

Furthermore, we are creating a commercial POS system that we will sell to different clients with disparate needs in terms of business rule processing. Each client will desire a unique set of logic to execute at certain predictable points in scenarios of using the system, such as when a new sale is initiated or when a new line item is added.

Therefore, we will need a mechanism to provide this flexibility and customization. The POS will be calculating the total sales at any given point of time.

Example:

Who is responsible for knowing the grand total of a sale in a typical Point of

Sale application?

Structure:
[image: image1.png]
Participants:
• InformationExpert: This is the class, which has the information to

 fulfill the responsibility. We assign the responsibility to this class to

 accomplish the behavior.

• Client: The class which will be using the InformationExpert class.
UML Diagrams:

Class Diagram:
[image: image2.emf]Sales

total : float

getTotal()

ProductDescription

price : float = 43.89f

getPrice()

SalesCounter

main()

SalesLineItem

quantity : int = 100

getSubTotal()

Sequence Diagram:

[image: image3.emf] : Sales : Sales

 : SalesLineItem : SalesLineItem : ProductDescription : ProductDescription

1: Subtotal

2: Quantity

3: Price

4: Description

5: UPC

6: Price(Unit Price Cost)

7: Subtotal

8: Total

Java Code Implementation:
SalesCounter.java:

import java.io.*;

public class SalesCounter

{

 public static void main(String []args)

 {

 float total;

 Sales s=new Sales();

 total=s.getTotal();

 System.out.println("Total sale is:"+total);

 }

}

Sales.java:

import java.io.*;

public class Sales

{

 private float total;

 public float getTotal()

 {

ProductDescription pd=new ProductDescription();

SalesLineItem sl=new SalesLineItem();

total=(pd.getPrice()*sl.getSubTotal());

return total;

 }

}

ProductDescription.java:

import java.io.*;

public class ProductDescription

{

 private float price=43.89f;

 public float getPrice()

 {

return price;

 }

}

SalesLineItem.java:
import java.io.*;

public class SalesLineItem

{

 private int quantity = 100;

 public int getSubTotal()

 {

 return quantity;

 }

}

Sample Output:

D:\pp\Expert>javac *.java

D:\pp\Expert>java SalesCounter

Total sale is:4389.0

[image: image4.png]
2. COMMAND DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Problem:

Need to issue requests to objects without knowing anything about the operation being requested or the receiver of the request.

Intent:

· Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or log requests, and support undoable operations.

· Promote “invocation of a method on an object” to full object status

· An object-oriented callback

Discussion:
The key to this pattern is an abstract Command class, which declares an interface for executing operations, in the simplest form this interface includes an abstract Execute operation. Concrete command subclasses specify a receiver-action pair by storing the receiver as an instance variable and by implementing Execute to invoke the request. The receiver has the knowledge required to carry out the request.

Structure:

The client that creates a command is not the same client that executes it. This separation provides flexibility in the timing and sequencing of commands. Materializing commands as objects means they can be passed, staged, shared, loaded in a table, and otherwise instrumented or manipulated like any other object. Command objects can be thought of a s “tokens” that are created by one client that knows what need to be done, and passed to another client that has the resources for doing it.

[image: image5.png]
Participants:

· Command

Declares an interface for executing an operation.

· Concrete Command (PasteCommand, OpenCommand)

Defines a binding between a Receiver object and an action.

Implements Execute by invoking the corresponding operation(s) on Receiver.

· Client (Application)

Creates a ConcreteCommand object and sets its receiver.

· Invoker (MenuItem)

Asks the command to carry out the request.

· Receiver (Document, Application)

Knows how to perform the operations associated with carrying out a request.Any class may serve as a Receiver.
Collaborations:

· The client creates a ConcreteCommand object and specifies its receiver.

· An Invoker object stores the ConcreteCommand object.

· The invoker issues a request by calling Execute on the command. When commands are undoable, ConcreteCommand stores state for undoing the command prior to invoking Execute.

· The ConcreteCommand object invokes operations on its receiver to carry out the request.

UML Diagrams:

Class Diagram:

[image: image6.emf]Customer(Client)

Request()

WorkoffRequest()

Receiver

execute()

WorkoffRequest()

11

BusinessAnalyst(Invoker)

execute()

1

Programmer(Concrete_Command)

execute()

1

Manager(Command)

execute()

Sequence Diagram:

[image: image7.emf]:Customer(Cli

ent)

:Customer(Cli

ent)

:BusinessAnalyst

(Invoker)

:BusinessAnalyst

(Invoker)

:Manager(Co

mmand)

:Manager(Co

mmand)

:Programmer(

Concret...

:Programmer(

Concret...

:Receiver:Receiver

1: Request or workoffRequest

2: execute

3: execute

4: execute or workoffRequest

Java Code Implementation:
MainApplication.java:

import java.io.*;

import java.util.*;

public class MainApplication

{

interface Maininterface

{

void execute();

}

 public static class Customer implements Maininterface

{

public void execute()

{

System.out.println("Customer Giving Requirements to BA");

}

}

public static class BusinessAnalyst implements Maininterface

{

public void execute()

{

System.out.println("BA Analysing after getting Requirements from Customer");

}

}

public static class Manager implements Maininterface

{

public void execute()

{

System.out.println("Manager Assigning work to Programmer based on Documents given by BA");

}

}

public static class Programmer implements Maininterface

{

public void execute()

{

System.out.println("Programmer Executing the task given by the Manager");

}

}

public static List Request()

{

List queue=new ArrayList();

queue.add(new Customer());

queue.add(new BusinessAnalyst());

queue.add(new Manager());

queue.add(new Programmer());

return queue;

}

public static void WorkOffRequest(List queue)

{

for(Iterator it=queue.iterator(); it.hasNext();) ((Maininterface)it.next()).execute();

}

public static void main(String args[])

{

List queue= Request();

WorkOffRequest(queue);

}

}
Sample Output:

C:\pp\command>javac *.java

Note: MainApplication.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

C:\pp\command>java MainApplication

Customer Giving Requirements to BA

BA Analysing after getting Requirements from Customer

Manager Assigning work to Programmer based on Documents given by BA

Programmer Executing the task given by the Manager

[image: image8.png]
3. FAÇADE DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Problem:

A segment of the client community needs a simplified interface to the overall functionality of a complex subsystem.
Intent:

Provide a unified interface to a set of interfaces in a subsystem. Facade defines a higher-level interface that makes the subsystem easier to use.
Discussion:

Structuring a system into subsystems helps reduce complexity. A common design goal is to minimize the communication and dependencies between subsystems.
One way to achieve this goal is to introduce a façade object that provides a single, simplified interface to the more general facilities of a subsystem. Consider for example a programming environment that gives applications access to its compiler subsystem. This subsystem contains classes such as Scanner, Parser, Program Node, BytecodeStream, and ProgramNodeBuilder that implements the compiler. Some specialized applications might need to access these classes directly. But most clients of a compiler generally don’t care about details like parsing and code generation; they merely want to compile some code.
For them, the powerful but low-level interfaces in the compiler subsystem only complicate their task. To provide a higher-level interface that can shield clients from these classes, the compiler subsystem also includes a Compiler class. This class defines a unified interface to the compiler’s functionality.
The Compiler class acts as a Facade: It offers clients a single, simple interface to the compiler subsystem. It glues together the classes that implement compiler functionality without hiding them completely. The compiler façade makes life easier for most programmers without hiding the lower-level functionality from the few that need it.
Structure:
[image: image9.png]
Participants:
• Facade (Compiler)

· Knows which subsystem classes are responsible for a request.

· Delegates client requests to appropriate subsystem objects.

• Subsystem Classes (Scanner, Parser, ProgramNode, etc.)

· Implement subsystem functionality.

· Handle work assigned by the Facade object.

· Have no knowledge of the facade; that is, they keep no references to it.
Collaborations:
· Clients communicate with the subsystem by sending requests to Façade, which forwards them to the appropriate subsystem object(s). Although the subsystem objects perform the actual work, the façade may have to do work of its own to translate its interface to subsystem interfaces.

· Clients that use the façade don’t have to access its subsystem objects directly.
UML Diagrams:
Class Diagram:

[image: image10.emf]Bank

HasSufficientSavings()

Credit

HasGoodCredit()

Loan

HasNoBadLoans()

MainApp

main()

SubClasses

implement

main

Facade

Mortgage

IsEligible()

Customer

Name : string

Customer()

11

Sequence Diagram:

[image: image11.emf] : MainApp : MainApp

 : Mortgage : Mortgage

 : Bank : Bank

 : Credit : Credit

 : Loan : Loan

1: Invokes

2: Invokes

3: Invokes

4: Invokes

5: Response

Java Code Implementation:

MainAPP.java:

import java.io.*;

import java.util.*;

public class MainApp

{

 public static void main(String args[])throws IOException

 {

 Mortgage m=new Mortgage();

 Customer c=new Customer("priya");

 boolean eligible=m.IsEligible(c, 12500);

 System.out.println("\n"+c.Name+" has been"+(eligible?
 " approved":" rejected"));

 }

}

Mortgage.java:

import java.io.*;

public class Mortgage

{

 private Bank bk=new Bank();

 private Credit cr=new Credit();

 private Loan ln=new Loan();

 public boolean IsEligible(Customer c,int amount)throws IOException

 {

 System.out.println(c.Name+" applies for "+amount+"loan\n");

 boolean eligible=true;

 if(!bk.HasSufficientSavings(c, amount))

 {

 eligible=false;

 }

 else if(!ln.HasNoBadLoans(c))

 {

 eligible=false;

 }

 else if(!cr.HasGoodCredit(c))

 {

 eligible=false;

 }

 return eligible;

 }

}
Customer.java:

//Source file: D:\\Facade\\Customer.java

import java.io.*;

public class Customer

{

 String Name;

 public Customer(String Name)
 {

 this.Name=Name;

 }

}
Bank.java:

import java.io.*;

public class Bank

{

 public boolean HasSufficientSavings(Customer c,int amount)

 {

 System.out.println("check bank for: "+c.Name);

 return true;

 }

}

Credit.java:

import java.io.*;

public class Credit

{

 public boolean HasGoodCredit(Customer c)

 {

 System.out.println("check credit for: "+c.Name);

return true;

 }

}

Loan.java

import java.io.*;

public class Loan

{

 public boolean HasNoBadLoans(Customer c)

 {

 System.out.println("check loans for: "+c.Name);

 return true;

 }

}

Sample Output:
D:\pp\Facade>javac *.java

D:\pp\Facade>java MainApp

priya applies for 12500 loan

check bank for: priya

check loans for: priya

check credit for: priya

priya has been approved

[image: image12.png]
4. PROXY DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Problem:

You need to support resource-hungry objects, and you do not want to instantiate such objects unless and until they are actually requested by the client.

Intent:

· Provide a surrogate or placeholder for another object to control access to it.

· Use an extra level of indirection to support distributed, controlled, or

 intelligent access.

· Add a wrapper and delegation to protect the real component from

undue complexity.

Discussion:

Design a surrogate, or proxy, object that: instantiates the real object the first time the client makes a request of the proxy, remembers the identity of this real object, and forwards the instigating request to this real object. Then all subsequent requests are simply forwarded directly to the encapsulated real object.

There are four common situations in which the Proxy pattern is applicable :

1. A virtual proxy is a placeholder for “expensive to create” objects. The real object is only created when a client first requests/accesses the object.

2. A remote proxy provides a local representative for an object that resides in a different address space. This is what the “stub” code in RPC and CORBA provides.

3. A protective proxy controls access to a sensitive master object. The “surrogate” object checks that the caller has the access permissions required prior to forwarding the request.

4. A smart proxy interposes additional actions when an object is accessed. Typical uses include:

· Counting the number of references to the real object so that it can be freed automatically when there are no more references (aka smart pointer),

· Loading a persistent object into memory when it’s first referenced,

· Checking that the real object is locked before it is accessed to ensure that no other object can change it.

Structure:

By defining a Subject interface, the presence of the Proxy object standing in place of the RealSubject is transparent to the client.

[image: image13.png]
Participants:
1.Proxy (ImageProxy)
· Maintains a reference that lets the proxy access the real subject. Proxy may refer to a Subject if the RealSubject and Subject interfaces are the same.

· Provides an interface identical to Subject's so that a proxy can by substituted for the real subject.

· Controls access to the real subject and may be responsible for creating and deleting it.

· Other responsibilities depend on the kind of proxy:

· Remote proxies are responsible for encoding a request and its

arguments and for sending the encoded request to the real subject in a different address space.

· Virtual proxies may cache additional information about the real

subject so that they can postpone accessing it. For example, the

Image Proxy from the Motivation caches the real image's extent.

· Protection proxies check that the caller has the access permissions required to perform a request.
2. Subject (Graphic)

 Defines the common interface for RealSubject and Proxy so that Proxy

 can be used anywhere a RealSubject is expected.

3. Real Subject (Image)

 Defines the real object that the proxy represents.

Collaborations:

· Proxy forwards requests to RealSubject when appropriate, depending on the kind of proxy
UML Diagrams:

Class Diagram:

[image: image14.emf]Abstractclass

str : string = ""

Abstractclass()

Server

getservice()

Proxy

ServerName()

Client

main()

Sequence Diagram:
[image: image15.emf]:Client:Client:Proxy:Proxy:Server:Server

1: Request for service

2: Find in the cache

3: Get the service from server

4: Get the service

5: Cache the new information

6: Get the service done

Java Code Implementation:
Client.java:

import java.io.*;

public class Client

{

public Proxy p;

public static void main(String args[])throws IOException

{

Proxy p1=new Proxy();

System.out.println("1st time establishing connection");

p1.ServerName();

System.out.println("2nd time retrying for connection");

p1.ServerName();

}

}

Abstractclass.java:

//Source file: D:\\pp\\Proxy\\Abstractclass.java

import java.io.*;

public class Abstractclass

{

 public String str;

 public Abstractclass()

 {

 str="";

 }

}

Proxy.java:

import java.io.*;

public class Proxy extends Abstractclass

{

public Abstractclass ac;

public Server s;

public Client c;

public Proxy() throws IOException

{

}

public void ServerName()throws IOException

{

 System.out.println("Proxy");

if(str=="")

{

System.out.println("Trying to get the service from server");

s=new Server();

str=s.getservice();

System.out.println("Server says"+str);

}

else

{

System.out.println("Proxy also cached your request");

System.out.println("proxy says"+str);

}

}

}

Server.java:

import java.io.*;

public class Server extends Abstractclass

{

 public Proxy p;

 public String getservice()

 {

 System.out.println("service initialization");

str="hello";

return(str);

 }

}

Sample Output:

C:\pp\Proxy>javac *.java

C:\pp\Proxy>java Client

1st time establishing connection

Proxy

Trying to get the service from server

service initialization

Server sayshello

2nd time retrying for connection

Proxy

Proxy also cached your request

proxy sayshello
[image: image16.png]
5. STRATEGY/POLYMORPHISM DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Intent:

Define a family of algorithms, encapsulates each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Discussion:
Many algorithms exist for breaking a stream of text into lines. Hard-wiring all such algorithms into the classes that require them isn’t desirable for several reasons:

· Clients that need line breaking get more complex if they include the line breaking code. That makes clients bigger and harder to maintain, especially if they support multiple line breaking algorithms.

· Different algorithms will be appropriate at different times. We don’t want to support multiple line breaking algorithms if we don’t use them all.

· It’s difficult to add new algorithms and vary existing ones when line breaking is an integral part of a client.

We can avoid these problems by defining classes that encapsulate different line breaking algorithms. An algorithm that’s encapsulated in this way is called a Strategy.

Suppose a Composition class is responsible for maintaining and updating the line breaks of text displayed in a text viewer. Line breaking strategies aren’t implemented by the class Composition. Instead, they are implemented separately by subclasses of the abstract Compositor class. Compositor subclasses implement different strategies:

· Simple Compositor implements a simple strategy that determines line breaks one at time.

· TexCompositor implements the TeX algorithm for finding line breaks. This strategy tries to optimize line breaks globally, that is, one paragraph at time.

· ArrayCompositor implements a strategy that selects breaks so that each row has a fixed number of items. It’s useful for breaking a collection of icons into rows.

For example: A Composition maintains a reference to a Compositor object. Whenever composition reformats its text, it forwards this responsibility to its Compositor object. The client of Composition specifies which Compositor should be used by installing the Compositor it desires into the Composition.

Structure:

[image: image17.png]
Participants:
· Strategy (Compositor)

Declares an interface common to all supported algorithms. Context uses this interface to call the algorithm defined by a Concrete Strategy.

· ConcreteStrategy(SimpleCompositor,TeXCompositor,Array,

Compositor)

Implements the algorithm using the Strategy interface.

· Context (Composition)

Is configured with a Concrete Strategy object.

Maintains a reference to a Strategy object.

May define an interface that lets Strategy access its data.
Collaborations:
· Strategy and Context interact to implement the chosen algorithm. A context may pass all data required by the algorithm to the strategy when the algorithm is called. Alternatively, the context can pass itself as an argument to Strategy operations. That lets the strategically back on the context as required.

· A context forwards requests from its clients to its strategy. Clients usually create and pass a Concrete Strategy object to the context; thereafter, clients interact with the context exclusively. There is often a family of Concrete Strategy classes for a client to choose from.
UML Diagrams:
Class Diagram:
[image: image18.emf]ContextShape

b

h

FindAreaTriangle()

Triangle

value = 0.0f

float area()

Poly

breadth

height

t = 0.0f

FindAreaTriangle()

Shape

float area()

11

11

Sequence Diagram:
[image: image19.emf] : ContextShape : ContextShape

 : Poly : Poly

 : Triangle : Triangle

1: send breadth&height value

2: execute

3: sending area of triangle value

Java Code Implementation:
Poly.java:

import java.io.*;

public class Poly

{

public static void main(String []args) throws IOException

{

float breadth, height,t=0.0f;

try

{

DataInputStream ds=new DataInputStream(System.in);

System.out.println("Enter breadth and height value to find area of triangle");

breadth=Float.valueOf(ds.readLine()).floatValue();

height=Float.valueOf(ds.readLine()).floatValue();

ContextShape cs=new ContextShape();

t=cs.FindAreaTriangle(breadth, height);

}

catch (Exception e){}

System.out.println("Area of Triangle is:"+t);

}

}

ContextShape.java:

import java.io.*;

public class ContextShape

{

float b,h;

Triangle t=new Triangle();

public float FindAreaTriangle(float breadth, float height)

{

b=breadth;

h=height;

return(t.area(b, h));

}

}
Shape.java:

import java.io.*;

public interface Shape

{

public float area(float breadth,float height);

}
Triangle.java:

import java.io.*;

public class Triangle implements Shape

{

float value=0.0f;

public float area(float breadth, float height)

{

value=0.5f*(breadth*height);

return(value);

}

}

Sample Input and Output:

C:\pp\poly1>javac *.java

Note: Poly.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

C:\pp\poly1>java Poly

Enter breadth and height value to find area of triangle

10

15

Area of Triangle is:75.0
[image: image20.png]
6. CONTROLLER DESIGN PATTERN
The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Intent:

The presentation-tier request handling mechanism must control and

coordinate processing of each user across multiple requests. Such control

mechanisms may be managed in either a centralized or decentralized manner.

Discussion:

Use a controller as the initial point of contact for handling a request.

The controller manages the handling of the request, including invoking

security services such as authentication and authorization, delegating

business processing, managing the choice of an appropriate view, handling

errors, and managing the selection of content creation strategies.

Structure:

[image: image21.png]
Participants:

· Controller : The controller is the initial contact point for handling all requests in the system. The controller may delegate to a helper to complete authentication and authorization of a user or to initiate contact retrieval.

· Dispatcher : A dispatcher is responsible for view management and navigation, managing the choice of the next view to present to the user. The dispatcher uses the RequestDispatcher object (supported in the servlet specification) and encapsulates some additional processing.

· Helper : A helper is responsible for helping a view or controller complete its processing. Helpers can service requests for data from the view by simply providing access to the raw data or by formatting the data as Web content.

· View

A view represents and displays information to the client. The view retrieves information from a model. Front Controller improves manageability of security, reusability.

UML Diagrams:

Class Diagram:

[image: image22.emf]Client

getController()

main()

Sale

getTotal()

View

display()

SaleController

execute()

setSale()

setView()

Sequence Diagram:

[image: image23.emf] : Client : Client : SaleController : SaleController

 : Sale : Sale

 : View : View

1: getController

2: setSale

3: setView

4: execute

5: getTotal

6: display

Java Code Implementation:

Sale.java:

import java.io.*;

public class Sale

{

public SaleController sc;

public float getTotal(int quantity, float price)

{

return (quantity*price);

}

}

View.java:

import java.io.*;

public class View

{

public SaleController sc;

public void display(float total)

{

System.out.println("The total sale is:"+total);

}

}

SaleController.java:

import java.io.*;

public class SaleController

{

public Client c;

public Sale s;

public View v;

public void execute(int quantity, float price)

{

float result=s.getTotal(quantity, price);

v.display(result);

}

public void setSale(Sale s)

{

this.s=s;

}

public void setView(View v)

{

this.v=v;

}

}

Client.java:

import java.io.*;

import java.util.Scanner;

public class Client

{

public SaleController sc;

public static SaleController getController()

{

SaleController sc=new SaleController();

Sale s=new Sale();

View v=new View();

sc.setSale(s);

sc.setView(v);

return sc;

}

public static void main(String []args)

{

SaleController sc=getController();

Scanner scr=new Scanner(System.in);

System.out.println("Enter the quantity");

int quantity=scr.nextInt();

System.out.println("Enter the price");

float price=scr.nextFloat();

sc.execute(quantity, price);

}

}

Sample Input and Output:

C:\pp\Controller>javac *.java

C:\pp\Controller>java Client

Enter the quantity

5

Enter the price

15

The total sale is:75.0

[image: image24.png]
7. OBSERVER/PUBLISHER-SUBSCRIBER DESIGN PATTERN

The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Problem:

A large monolithic design does not scale well as new graphing or monitoring requirements are levied.

Intent:

Define a one-to-many dependency between objects so that when one object changes state, all its dependents are notified and updated automatically.

Discussion:

A common side-effect of partitioning a system into a collection of cooperating classes is the need to maintain consistency between related objects. You don’t want to achieve consistency by making the classes tightly coupled, because that reduces their reusability.

For example: Many graphical user interface toolkits separate the presentational aspects of the user interface from the underlying application data [KP88, LVC89, P+88, WGM88]. Classes defining application data and presentations can be reused independently. They can work together, too. Both a spreadsheet object and bar chart object can depict information in the same application data object using different presentations. The spreadsheet and the bar chart don’t know about each other, thereby letting you reuse only the one you need. But they behave as though they do. When the user changes the information in the spreadsheet, the bar chart reflects the changes

immediately, and vice versa. This behavior implies that the spreadsheet and bar chart are dependent on the data object and therefore should be notified of any change in its state.

And there’s no reason to limit the number of dependent objects to two; there may be any number of different user interfaces to the same data. The Observer pattern describes how to establish these relationships. The key objects in this pattern are subject and observer. A subject may have any number of dependent observers. All observers are notified whenever the subject undergoes a change in state. In response, each observer will query the subject to synchronize its state with the subject’s state. This kind of interaction is also known as publish-subscribe. The subject is the publisher of notifications. It sends out these notifications without having to know who its observers are. Any number of observers can subscribe to receive notifications.

Structure:
[image: image25.png]
Participants:
• Subject

· Knows its observers. Any number of Observer objects may observe a subject.

· Provides an interface for attaching and detaching Observer objects.

• Observer

· Defines an updating interface for objects that should be notified of changes in a subject.

• Concrete Subject

· Stores state of interest to ConcreteObserver objects.

· Sends a notification to its observers when its state changes.

• Concrete Observer

· Maintains a reference to a ConcreteSubject object.

· Stores state that should stay consistent with the subject's.

· Implements the Observer updating interface to keep its state consistent with the subject's.

Collaborations:
· ConcreteSubject notifies its observers whenever a change occurs that could make its observers state inconsistent with its own.
· After being informed of a change in the concrete subject, a ConcreteObserver object may query the subject for information. ConcreteObserver uses this information to reconcile its state with that of the subject.

UML Diagrams:

Class Diagram:

[image: image26.emf]ContextShape(Con_Subject)

b

h

FindAreaTriangle()

Shape

area()

Triangle(Con_observer)

value = 0.0f

area()

Client

main()

Poly(Subject)

breadth

height

ToSendData()

n

-observers

n

1

-subject

1

11

Sequence Diagram:

[image: image27.emf] : Client : Client

 : Poly(Subject) : Poly(Subject)

 : ContextShape(Con_Subject) : ContextShape(Con_Subject)

Shape(Observer)Shape(Observer)

 : Triangle(Con_observer) : Triangle(Con_observer)

2: invokes

3: invokes

4: invokes

1: invokes

5: responses

Java Code Implementation:
Client.java:

import java.io.*;

class Client

{

public static void main(String []args)

{

Poly p=new Poly();

p.ToSendData();

}

}
Poly.java:

import java.io.*;

public class Poly

{

public void ToSendData()

{

float breadth, height,t=0.0f;

try

{

DataInputStream ds=new DataInputStream(System.in);

System.out.println("Enter breadth and height value to find area
 of triangle");

breadth=Float.valueOf(ds.readLine()).floatValue();

height=Float.valueOf(ds.readLine()).floatValue();

ContextShape cs=new ContextShape();

t=cs.FindAreaTriangle(breadth, height);

}

catch (Exception e){}

System.out.println("Area of Triangle is:"+t);

}

}
ContextShape.java:

import java.io.*;

public class ContextShape

{

float b,h;

Triangle t=new Triangle();

public float FindAreaTriangle(float breadth, float height)

{

b=breadth;

h=height;

return(t.area(b, h));

}

}

Shape.java:

import java.io.*;

public interface Shape

{

public float area(float breadth,float height);

}

Triangle.java:

import java.io.*;

public class Triangle implements Shape

{

float value=0.0f;

public float area(float breadth, float height)

{

value=0.5f*(breadth*height);

return(value);

}

}

Sample Input and Output:
C:\Final\Observer>javac *.java

Note: Poly.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

C:\Final\Observer>java Client

Enter breadth and height value to find area of triangle

15

3

Area of Triangle is:22.5

[image: image28.png]
8. VISITOR / CLIENT-DISPATCHER DESIGN PATTERN

The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.

Intent:

Represent an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates.

Discussion:

Consider a compiler that represents program as abstract syntax trees. It will need to perform operations on abstract syntax trees for “static semantic” analyses like checking that all variables are defined. It will also need to generate code. So it might define operations for type-checking, code optimization, flow analysis, checking for variables being assigned values before they’re used, and so on. Moreover, we could use the abstract syntax trees for pretty-printing, program restricting, code instrumentation, and computing various metrics of a program.
Most of these operations will need to treat nodes that represent assignment statements differently from nodes that represent variables or arithmetic expressions. Hence there will be one class for assignment statements, another for variable accesses, another for arithmetic expressions, and so on. The set of node classes depends on the language being compiled, of course, but it doesn’t change much for a given language. This diagram shows part of the Node class hierarchy. The problem here is that distributing all these operations across the various node classes leads to a system that’s hard to understand, maintain, and change.
It will be confusing to have type-checking code mixed with pretty-printing code or flow analysis code. Moreover, adding a new operation usually requires recompiling all of these classes. It would be better if each new operation could be added separately, and the node classes were independent of the operations that apply to them.
We can have both by packaging related operations from each class in a separate object, called a visitor, and passing it to elements of the abstract syntax tree as it’s traversed. When an element “accepts” the visitor, it sends a request to the visitor that encodes the element’s class. It also includes the element as an argument. The visitor will then execute the operation for that element—the operation that used to be in the class of the element. For example, a compiler that didn’t use visitors might type-check a procedure by calling the Type Check operation on its abstract syntax tree. Each of the nodes would implement Type Check operation on its abstract syntax components (see the preceding class diagram). If the compiler type-checked a procedure using visitors, then it would create a Type Checking Visitor object and call the Accept operation in the abstract syntax tree with that object as an argument. Each of the nodes would implement Accept by calling back on the visitor: an assignment code calls Visit Variable Reference. What used to be the Type Check operation in class Assignment Node is now the Visit Assignment operation on type-checking, we need an abstract parent class node Visitor for all visitors of an abstract syntax tree. Node Visitor must declare an operation for each node class.
 An application that needs to compute program metrics will define new subclasses of Node Visitor and will no longer need to add application-specific code to the node classes. The Visitor pattern encapsulates the operations for each compilation phase in a Visitor associated with that phase. With the Visitor pattern, you define two class hierarchies: one for the elements being operated on (the Node hierarchy) and one for the visitors that define operations on the elements (the Node Visitor hierarchy). You create a new operation by adding a new subclass to the visitor class hierarchy. As long as the grammar that the compiler accepts doesn’t change (that is, we don’t have to add new Node subclasses), we can add new functionality simply by defining new Node Visitor subclasses.

Structure:
[image: image29.png]
Participants:

• Visitor (Node Visitor)

· Declares a Visit operation for each class of Concrete Element in the object structure. The operation’s name and signature identifies the class that sends the Visit request to the visitor.
· That lets the visitor determine the concrete class of the element being visited. Then the visitor can access the element directly through its particular interface.

• Concrete Visitor (Type Checking Visitor)

· Implements each operation declared by Visitor. Each operation implements fragment of the algorithm defined for the corresponding class of object in the structure.
· Concrete Visitor provides the context for the algorithm and stores local state. This state often accumulates results during the traversal of the structure.

• Element (Node)

· Defines an Accept operation that takes a visitor as an argument.

• Concrete Element(AssignmentNode, VariableRefNode)

· Implements an Accept operation that takes a visitor as an argument.

• ObjectStructure (Program)

· Can enumerate its elements.

· May provide a high-level interface to allow the visitor to visit its elements.

· May either to be a composite or a collection such as a list or a set.

Collaborations:
· A client that uses the Visitor pattern must create a ConcreteVisitor object and then traverse the object structure, visiting each element with the visitor.

· When an element is visited, it calls the Visitor operation that corresponds to its class. The element supplies itself as an argument to this operation to let the visitor access its state, if necessary.

UML Diagrams:

Class Diagram:

[image: image30.emf]NotFound

NotFound()

ClientDispatcher

main()

PrintService

Service()

Dispatcher

registry : Hashtable = new Hashtable

rnd : Random = new Random(123456)

registry()

locate()

Client

doTask()

Service

nameOfservice : String

nameOfserver : String

service()

Sequence Diagram:

[image: image31.emf] : Client : Client

 : Dispatcher : Dispatcher

 : Service : Service

1: registerService

2: getChannel

3: locateServer

4: establishChannel

5: acceptConnection

6: connectionAccepted

7: sendRequest

8: receiveRequest

9: runService

10: serviceServed

Java Code Implementation:
Client.java:

import java.util.*;

import java.io.*;

public class Client

{

public void doTask()

{

Service s;

try

{

s=ClientDispatcher.d.locate("PrintService");

s.Service();

}

catch (NotFound n)

{

System.out.println("Not available");

}

try

{

s=ClientDispatcher.d.locate("MailService");

s.Service();

}

catch (NotFound n)

{

System.out.println("Not available");

}

try

{

s=ClientDispatcher.d.locate("DrawService");

s.Service();

}

catch (NotFound n)

{

System.out.println("Not available");

}

}

}

Dispatcher.java:

import java.io.*;

import java.util.*;

public class Dispatcher

{

Hashtable registry=new Hashtable();

Random r=new Random(123456);

public void registry(String svc, Service obj)

{

Vector v=(Vector)registry.get(svc);

if(v==null)

{

v=new Vector();

registry.put(svc, v);

}

v.addElement(obj);

}

public Service locate(String svc) throws NotFound

{

Vector v=(Vector)registry.get(svc);

if(v==null) throw new NotFound();

if(v.size()==0)throw new NotFound();

int i=r.nextInt()%v.size();

return(Service)v.elementAt(i);

}

}

NotFound.java:

import java.io.*;

import java.util.*;

class NotFound extends Exception

{

}

Service.java:

import java.io.*;

import java.util.*;

abstract class Service

{

String nameOfservice;

String nameOfserver;

public Service(String svc, String srv)

{

nameOfservice=svc;

nameOfserver=srv;

ClientDispatcher.d.registry(nameOfservice, this);

}

public abstract void Service();

}

PrintService.java:

import java.util.*;

import java.io.*;

public class PrintService extends Service

{

public PrintService(String svc, String srv)

{

super(svc, srv);

}

public void Service()

{

System.out.println("service"+nameOfservice+"by"+nameOfserver);

}

}

ClientDispatcher.java:

import java.util.*;

import java.io.*;

public class ClientDispatcher

{

public static Dispatcher d=new Dispatcher();

public static void main(String []args)

{

Service s1=new PrintService("PrintService", "server1");

Service s2=new PrintService("MailService", "server2");

Client client=new Client();

client.doTask();

}

}

Sample Output:

C:\pp\Client>javac *.java

Note: Dispatcher.java uses unchecked or unsafe operations.

Note: Recompile with -Xlint:unchecked for details.

C:\pp\Client>java ClientDispatcher

service PrintService by server1

service MailService by server2

Not available

[image: image32.png]
9. FORWARDER-RECIEVER DESIGN PATTERN

The student has to draw the necessary UML diagrams using any suitable UML Drawing Tool and implement in Java OR C++ OR C# a program to demonstrate the Design Pattern specified by the Examiner.
Intent:
"The Forwarder-Receiver design pattern provides transparent interprocess

communication for software systems with a peer-to-peer interaction model. It introduces forwarders and receivers to decouple peers from the underlying communication mechanisms."

Discussion:

Example: The company DwarfWare offers applications for the management of computer networks. In a new project a development team has defined an infrastructure for network management. Among other components, the system consists of agent processes written in java that run on each available network node.

 These agents are responsible for observing and monitoring events and resources. In addition, they allow network administrators to change and control the behavior of the network, for example by modifying routing tables. To enable the exchange of information, as well as fast propagation of administration commands, each agent is connected to remote agents in a peer-to-peer fashion, acting as client or server as required.

 As the infrastructure needs to support a wide variety of different h/w and s/w systems, the communication between peers must not depend on a particular mechanism for inter-process communication.

Problem:A common way to build distributed applications is to make use of available low-level mechanisms for inter-process communication(IPC) such as TCP/IP, sockets or message queues. These are provided by almost all operating systems, and are very efficient when compared to higher-level mechanisms such as remote procedure calls.

 These low-level mechanism, however, often introduce dependencies on the underlying operating system and network protocols. By using a specific IPC mechanism, the resulting solution restricts portability, constraints the system’s capability to support heterogeneous environments, and makes it hard to change the IPC mechanism later.

The Forwarder-Receiver pattern is useful when you need to balance the following forces:

· The system should allow the exchangeability of the communication mechanisms.

· The cooperation of components follows a peer-to-peer model, in which a sender only needs to know the names of its receivers.

· The communication between peers should not have a major impact on performance.

Solution: Distributed Peers collaborate to solve a particular problem. A peer may act as a client, requesting services, as a server, providing services, or both. The details of the underlying IPC mechanism for sending or receiving messages are hidden from the peers by encapsulating all such functionality are the mapping of names to physical locations, the establishment of communication channels, or the marshaling and unmarshaling of messages.
The Forwarder-Receiver design pattern consists of three kinds of components:

(a)forwarders (b)receivers, and (c)peers
Structure:
[image: image33.png]
Participants:
• Forwarder

· Provides general interface for sending messages across process boundaries

· Marshals and delivers messages to remote receivers

· Maps names to physical addresses

· Name of forwarder’s peer is included in transmitted message

• Receiver

· Provides general interface for receiving messages across process boundaries

· Receives and unmarshals messages from remote forwarders

• Peer

· Responsible for application tasks

· Knows name(s) of remote peer(s) it needs to communicate with

· Uses forwarder to send messages (requests)

· Uses receiver to receive messages (responses)
UML Diagrams:

Class Diagram:

[image: image34.emf]Client

main()

Entry

destionationID : String

portNR : int

Entry()

dest()

port()

Receiver

myname : String

Receiver()

unMarshal()

receive()

receiveMsg()

Forwarder

myname : String

Forwarder()

marshal()

deliver()

sendMsg()

Server

run()

main()

Messsage

sender : String

data : String

Message()

Sequence Diagram:

[image: image35.emf]Peer1Peer1Forwarder

Forw1

Forwarder

Forw1

Receiver

Recv1

Receiver

Recv1

Receiver

Recv2

Receiver

Recv2

Forwarder

Forw2

Forwarder

Forw2

Peer2Peer2

2: reqService

3: sendMsg

4: Marshal

5: DeliverMsg

6: receive

7: unMarshal

8: DeliverMsg

9: receiveMsg

10: sendMsg

11: marshal

12: DeliverMsg

13: Receive

14: unMarshal

15: DeliverMsg

1: recvMsg

Java Code Implementation:
Entry.java:

import java.io.*;

public class Entry

{

private String destinationID;

private int portNR;

public Entry(String theDest, int thePort)

{

destinationID=theDest;

portNR=thePort;

}

public String dest()

{

return destinationID;

}

public int port()

{

return portNR;

}

}

Forwarder.java:

import java.io.OutputStream;

import java.io.UnsupportedEncodingException;

import java.net.Socket;

public class Forwarder

{

private String myname;

private Socket s;

private OutputStream os;

public Forwarder(String name)

{

System.out.println("\nForwarder class created...........!");

myname=name;

}

private byte[] marshal(Message msg)

{

byte[] returnValue=null;

int i, emptySequence;

String str;

emptySequence=10-msg.sender.length();

str=""+msg.sender;

for(i=0;i<emptySequence;i++)

str+="";

str+=msg.data;

System.out.println("\nForwarder"+str);

try

{

returnValue=str.getBytes("UTF-8");

}

catch (UnsupportedEncodingException e) { }

System.out.println("\nData Forward:"+returnValue);

return returnValue;

}

private void deliver(String dest, byte[] data)

{

try

{

Entry entry;

if(dest.equals("Client"))

{

entry=new Entry("127.0.0.1", 8888);

System.out.println("\nServer--------->Forwarder");

}

else

{

entry=new Entry("127.0.0.1", 9999);

System.out.println("\nClient---------->Forwarder");

}

s=new Socket(entry.dest(), entry.port());

 System.out.println("\nCatching"+entry.dest()+entry.port());

os=s.getOutputStream();

os.write(data);

os.flush();

os.close();

s.close();

}

catch (Exception e)

{

}

}

public void sendMsg(String dest, Message msg)

{

deliver(dest, marshal(msg));

}

}

Message.java:

import java.io.*;

public class Message

{

public String sender;

public String data;

public Message(String thesender, String rawData)

{

sender=thesender;

data=rawData;

}

}

Receiver.java:

import java.io.InputStream;

import java.io.UnsupportedEncodingException;

import java.net.ServerSocket;

import java.net.Socket;

public class Receiver

{

private String myname;

private ServerSocket sst;

private Socket s;

private InputStream is;

public Receiver(String name)

{

System.out.println("\nReceiver class created---------!");

myname=name;

}

public Message unMarshal(byte[] anArray)

{

String str="Receiver one", sender, data;

System.out.println("\nReceiver:"+str);

sender=str.substring(0, 9);

System.out.println("\nSender:"+sender);

data=str.substring(10);

Message msg=new Message(sender.trim(), data);

return msg;

}

private byte[] receive()

{

int val;

byte buffer[]=null;

try

{

Entry entry;

if(myname.equals("Client"))

{

entry=new Entry("127.0.0.1", 8888);

System.out.println("\nClient---->Receiver");

}

else

{

entry=new Entry("127.0.0.1", 9999);

System.out.println("\nServer---->Receiver");

}

sst=new ServerSocket(entry.port());

s=sst.accept();

is=s.getInputStream();

val=is.read();

buffer=new byte[val];

is.read(buffer);

System.out.println("\nData Receiver:"+buffer);

try

{

System.out.println("\nUNMARSHAL:"+new

 String(buffer, "UTF-8"));

}

catch (UnsupportedEncodingException e1)

{

e1.printStackTrace();

}

is.close();

s.close();

sst.close();

}

catch (Exception e)

{

System.out.println("\nA error occured:"+e.getMessage());

}

return buffer;

}

public Message receiveMsg()

{

return unMarshal(receive());

}

}

Server.java:

import java.io.*;

public class Server extends Thread

{

Receiver r;

Forwarder f;

public void run()

{

System.out.println("\nServer class created...............>");

Message result=null;

r=new Receiver("server");

result=r.receiveMsg();

System.out.println("\nServer result:"+result.sender);

f=new Forwarder("server");

 Message msg=new Message(" server ",
 "i am alive..................>");

f.sendMsg("Client", msg);

}

public static void main(String []args)

{

Server server=new Server();

server.start();

}

}

Client.java:
import java.io.*;

public class Client

{

public static void main(String []args)

{

Forwarder f=new Forwarder(new String("Client"));

Message msg=new Message("Client", "hellooooo....>");

f.sendMsg("server", msg);

Message result=null;

Receiver r=new Receiver(new String("Client"));

result=r.receiveMsg();

}

}
Sample Output:
C:\pp\Forwarder>javac *.java

C:\pp\Forwarder>java Server

Server class created...............>

Receiver class created---------!

Server---->Receiver

[image: image36.png]
C:\pp\Forwarder>javac *.java

C:\pp\Forwarder>java Client

Forwarder class created...........!

ForwarderClienthellooooo....>

Data Forward:[B@82ba41

Client---------->Forwarder

Catching127.0.0.19999

Receiver class created---------!

Client---->Receiver

Data Receiver:[B@7d772e

UNMARSHAL:server i am alive...............

Receiver:Receiver one

Sender:Receiver

[image: image37.png]
C:\pp\Forwarder>javac *.java

C:\pp\Forwarder>java Server

Server class created...............>

Receiver class created---------!

Server---->Receiver

Data Receiver:[B@130c19b

UNMARSHAL:lienthellooooo....>

Receiver:Receiver one

Sender:Receiver

Server result:Receiver

Forwarder class created...........!

Forwarder server i am alive..................>

Data Forward:[B@7d772e

Server--------->Forwarder

Catching127.0.0.18888

[image: image38.png]
PAGE
1
__

MCA DEPT, TOCE

NAME:SUMIT ANAND

