SEMINAR REPORT 2011 SPEECH APPLICATION LANGUAGE TAG

GOVERNMENT POLYTECHNIC COLLEGE

KUNNAMKULAM

KIZHOOR (P.O), THRISSUR (DT), KERALA
[image: image6.jpg]
SEMINAR REPORT

2010-2011
SPEECH APPLICATION LANGUAGE TAGS

PRESENTED BY

TYSON SUNNY
DEPARTMENT OF COMPUTER ENGINEERING

DIRECTORATE OF TECHNICAL EDUCATION

GOVERNMENT OF KERALA
GOVT. POLYTECHNIC COLLEGE
KUNNAMKULAM
KIZHOOR (P.O) THRISSUR (DT) KERALA, PIN – 680523
[image: image1.jpg]

DEPARTMENT OF COMPUTER ENGINEERING

CERTIFICATE

This is to certify that the seminar report title……………............
………………………………………………………………….
Was presented by Mr/Mrs.…………………………………………..
Reg.No:………………. in partial fulfillment of the requirement for the Award of Diploma in Computer Engineering under the Technical Education department during the academic year 2010-2011 at Government Polytechnic College, Kunnamkulam.

Kunnamkulam

 Head of Department

 …………….

Internal Examiner External Examiner

ACKNOWLEDGMENT

I express my sincere gratitude to Mr. Sajan.E.V, Head of the department of Computer Engineering for his guidance and support to shape this seminar in a systematic way.

I am also greatly indebted to Mr. Shejin Sir, department of Computer Engineering for the valuable suggestions in the preparation of the seminar.

I am also greatly indebted to Mr. Abdul Vahab Sir, department of Computer Engineering for the valuable suggestions in the preparation of the seminar.

I am also greatly indebted to Ms.Manila Sir, department of Computer Engineering for the valuable suggestions in the preparation of the seminar.

In addition I would like to thank all staff members of Computer Department and all my friends of S6 CT for their suggestions and constructive criticism.

TYSON SUNNY

CONTENTS

1. INTRODUCTION…………………………………………

 05
2. NEED FOR SPEAKING AND LISTENING TO A COMPUTER……………………...................... 06
3. SPEECH APPLICATIONS………………………………. 07
4. LANGUAGES FOR SPEECH APPLICATION………… 11
5. SALT(SPEECH APPLICATION LANGUAGE TAG)…...
 12
6. ARCHITECTURE FOR SALT APPLICATION….. 15
 7. APPLICATIONS THAT CAN BUILD WITH SALT … 17
 8. COMPARISON WITH VOICE XML…………………… 22
 9. CONCLUSION…………………………………………….........

 25
 10. REFERENCES... 26
introduction

Speaking and listening is so fundamental that people take it for granted. Everyday people ask questions. They give instructions. Speaking and listening are necessary for learning and training, for selling and buying, for persuading and agreeing, and for most social interactions. For the majority of people, speaking and understanding spoken speech is simply the most convenient and natural way of interacting with other people.

So, is it possible to speak and listen to a computer?

Yes.

Emerging technology enables users to speak and listen to the computer now. Speech recognition converts spoken words and phrases into text, and speech synthesis converts text o human-like spoken words and phrases.

While speech recognition and synthesis have long been in the research stage, three recent advances have enabled speech recognition and synthesis technologies to be used in real products and services:

 (1) faster, more powerful computer technology, (2) improved algorithms using speech data captured from the real world, and (3) improved strategies for using speech recognition and speech synthesis in conversational dialogs enabling users to speak and listen to the computer.

need for speaking and listening to a computer

Speech applications enable users to speak and listen to a computer despite physical impairments such as blindness or poor physical dexterity. Speaking enables impaired callers to access computers. Callers with poor physical dexterity (who cannot type) can use speech to enter requests to the computer. The sight-impaired can listen to the computer as it speaks.

When visual and/or mechanical interfaces are not an option, callers can perform transactions by saying what they want done and supplying the appropriate information. If a person with impairments can speak and listen, that person can use a computer to bypass the limitations of small keyboards and screens. As devices become smaller, our fingers do not. Keys on the keypad shrink often to the point where people with thick fingers press two or more keys with one finger stroke. The small screens on some cell phones may be difficult to see, especially in extreme lighting conditions. Even PDAs with QWERTY keyboards are awkward. (QWERTY is a sequence of six keys found on traditional keyboards used by most English and Western-European language speakers.)

Users hold the device with one hand and “hunt and peck” with the forefinger of the other hand. It is impossible to use both hands to touch-type and hold the device at the same time. By speaking, callers can bypass the keypad (except possibly for entering private data in crowded or noisy environments). By speaking and listening, callers can bypass the small screen of many handheld electronic devices.

SPEECH APPLICATIONS
if the device has no keyboard:

Many devices have no keypad or keyboard. For example, stoves, refrigerators, and heating and air conditioning thermostats have no keyboards. These appliances may have a small control panel with a couple of buttons and a dial. The physical controls are good for turning the appliance on and off and adjusting its temperature and time.

Without speech, a user cannot specify complex instructions such as, “turn the temperature in the oven to 350 degrees for 30 minutes, then change the temperature to 250 degrees for 15 minutes, and finally leave the oven on warm.” Without speech, the appliance cannot ask questions such as, “When on Saturday morning do you turn the heat on?” Any sophisticated dialog with these appliances will require speech input. And speech can be used with rotary phones, which do not have a keypad.

while callers work with their hands and eyes:

 Speaking and listening are especially usefusituations where the caller’s eyes and/or hands are busy. Drivers need to keep their eyes on the road and their hands on the steering wheel. If they must use a computer when driving, the interface should be speech only.

 When driving machines requiring their hands to operate controls and their eyes to focus on the machine activities, machine operators can also use speech to communicate with a computer. (Although is it not recommended that you hold and use a cell phone while driving a car.)

 Mothers and caregivers with children in their arms may also appreciate speaking and listening to a doctor’s Web page or medical service. If a person can speak and listen to others while they work, they can speak and listen to a computer while they work.
at anytime during the day:

Many telephone help lines and receptionists are available only during working hours. Computers can automate much of this activity, such as accepting messages, providing information, and answering callers’ questions. Callers can access these automated services 24 hours a day, 7 days a week via a telephone by speaking and listening to a computer. If a person can speak and listen, they can interact with a computer anytime during the day or night.
with instant connection without being on “hold

 Callers become frustrated when they hear “your call is very important to us” because this message means they must wait. “Thanks for waiting, all of our operators are busy” means more waiting. When using speech to interact with an application, there are no hold times.

The computer responds quickly. (However, computers can become saturated which results in delays; but these occur less frequently than callers waiting for a human operator.) Because many callers can be serviced by voice-enabled applications, the human operators are freed to resolve more difficult caller problems.
using languages that do not lend to keyboarding:

Some languages do not lend themselves to data entry using the traditional QWERTY keyboard. Rather than force Asian language users to mentally translate their words and phrases to phonetic sounds and then press the corresponding keys on the QWERTY keyboard, (QWERTY is a sequence of six keys found on traditional keyboards used by most English and Western-European language speakers.) a much better solution is to speak and listen.

Speech and handwriting recognition will be the key to enabling Asian language speakers to gain full use of computers. If a person can speak and listen to an Asian language, they can interact with a computer using that language.
to convey emotion:

In an effort to enhance written text to convey emotions, callers frequently use emoticons — keyboard symbols to convey emotions to enhance their text messages. Example emoticons include :) for happy or a joke and :(for sad. With speech, these emotions can be conveyed naturally by changing the inflection, speed, and volume of the speaking voice.This tells the importance of speech in conveying emotions. Thus we can say that it is an important application for one who have to express his feelings naturally. Speech applications have excellent scope today.

to use multiple channels of communication:

Speech enhances traditional GUI user interfaces by enabling users to speak as well as click and type, and hear as well as read. Multimodal user interfaces will improve the exchange of information between users and computers by transferring information in the most appropriate mode—speech for simple requests and simple answers, and GUIs for complex requests and graphical and pictorial answers.

Also speech enable applications are very useful to avoid complexity. So it is very inconvenient for a person to include voice in his GUI applications which improves the user interaction.

And for all the above mentioned speech application SALT(Speech Application Language Tag) is the better solution. Reuse of application logic,rapid development and speech+GUI application are the major benefits of SALT.
LANGUAGES FOR SPEECH APPLICATIONS

This new environment led to the creation of VoiceXML, an XML-based declarative language for describing the exchange of spoken information between users and computers and related languages. The related languages include the Speech Recognition Grammar Specification (SRGS) for describing what words and phrases the computer should listen for and the Speech Synthesis Markup Language (SSML) for describing how text should be rendered as verbal speech. VoiceXML is widely used to develop voice-only user interfaces for telephones and cell phones users.

VoiceXML uses predefined control structures, enabling developers to specify what should be spoken and heard, but not the low level details of how those operations occur. As is the case with many special-purpose declarative languages, developers sometimes prefer to write their own procedural instructions.

Speech Application Language Tags (SALT) was developed to enable Web developers to use traditional Web development languages to specify the control and use a small number of XML elements for managing speech. In addition for use with telephony applications, SALT can also be used for multimodal applications where people use multiple modes of input—speaking, as well as typing and selecting (pointing).

SALT:

SALT was developed as a competitor to VoiceXML and was supported by the SALT Forum. The SALT Forum was founded on October 15, 2001 by Microsoft, along with Cisco Systems, Comverse, Intel, Philips Consumer Electronics, and ScanSoft. The SALT 1.0 specification was submitted to the W3C (World Wide Web Consortium) for review in August 2002. However, the W3C continued developing its VoiceXML 2.0 standard, which reached the final "Recommendation" stage in March 2004. By 2006, Microsoft realized Speech Server had to support the W3C VoiceXML standard to remain competitive. Microsoft joined the VoiceXML Forum as a Promoter in April of that year. Speech Server 2007 supports VoiceXML 2.0 and 2.1 in addition to SALT. In 2007, Microsoft purchased Tellme, one of the largest VoiceXML service providers.

By that point nearly every other SALT Forum company had committed to VoiceXML. The last press release posted to the SALT Forum website was in 2003, while the VoiceXML Forum is quite active. "SALT [Speech Application Language Tags] is a direct competitor but has not reached the level of maturity of VoiceXML in the standards process," said Bill Meisel, principal at TMA Associates, a speech technology research firm.

The SALT Forum originally consisting of Cisco, Comverse, Intel, Microsoft, Philips, and SpeechWorks (now ScanSoft), published the initial specificationin June 2002. This specification was contributed to the World Wide Web Consortium (W3C) in August of that year. Later in June 2003, the SALT Forum contributed a SALT profile for Scalar Vector Graphics (SVG) to the W3C. The SALT specification contains a small number of XML elements enabling speech output to the user, called prompts, and speech input form the user, called responses. SALT elements include:

· <prompt>—presents audio recordings and synthesized speech to the user. SALT also contains a prompt queue and commands for managing the presentation of prompt on the queue to the user.
 • Simple TTS prompt

 <salt:prompt id = "Welcome">

 Welcome to your SALT application.

 What would you like to do?

 </salt:prompt>

 • Pre -recorded audio

 <salt:prompt id = "RecordedPrompt">

 <content href = "welcome.wav"/>

 </salt:prompt>

· <listen>—recognizes spoken words and phrases. There are three listen modes:
Automatic—used for recognition in telephony or hands-free scenarios. The speech platform rather than the application controls when to stop the recognition facility.

 Single—used for push-to-talk applications. An explicit stop from the application returns the recognition result.

 Multiple—used for “open-microphone” or dictation applications. Recognition results are returned at intervals until the application makes an explicit stop.

• Using <listen> for speech recognition:

 <salt:listen id = "listenEmployeeName">

 <grammar src = "MyGrammar.grxml"/>

 <bind targetelement = "txtName"

 value = "//employee_name"/>

 </salt:listen>

• Note: once recognised "//employee_name" is bound to "txtName".

• Using <listen> for voice recording:

 <salt:listen id = "recordMessage"

 onreco = "processMessage">

 <record beep = "true"/>

 </salt:listen>

 <script>

 <![CDATA[

 function processMessage() {

 … ;]]>

 </script>

· <grammar>—specifies the words and phrases a user might speak
· <dtmf>—recognizes DTMF (telephone touch-tones)
· <record>—captures spoken speech, music, and other sounds

· <bind>—integrates recognized words and phrases with application logic
· <smex>—communicates with other platform components

 HELLO SALT

<html xmlns:salt =http://www.saltforum.org/2002/SALT>

 <body onload = "hello.Start()">

 <salt:prompt id = “hello”>

 Hello World

 </salt:prompt>

 </body>

</html>
EXPLANATION
• SALT tags have been added to the HTML document:

 <xmlns:salt> defines a namespace

 <salt:prompt> defines a speech prompt

• Document needs to be loaded in SALT 1.0 compatible browser.

• Methods such as Start() initiate SALT tags.

• It would say "Hello World” using a text-to-speech engine.
 SALT designers subsetted the SALT functionality into multiple profiles that are implemented and used independently of the remaining SALT modules. Various devices may use different combinations of profiles. Devices with limited processor power or memory need not support all features (for example, mobile devices do not need to support dictation).

Devices may be tailored to particular environments (for example, telephony support may not be necessary for television set-top boxes). While full application portability is possible within devices using the same profile, there is limited portability across devices with different profiles.

 SALT has no control elements, such as <for> or <goto>, so developers embed SALT elements into other languages, called host languages. For example, SALT elements may be embedded into languages such XHTML, SVG, and JavaScript.
 Developers use the host language to specify application functions and execution control while the SALT elements provide advanced input and output using speech recognition and speech synthesis.The Microsoft Speech Server 2004 product supports SALT, while Microsoft Speech Server 2007 supports SALT in addition to VoiceXML 2.0 and 2.1. There is also a speech add-in for Internet Explorer that interprets SALT tags on web pages, available as part of the Microsoft Speech Application SDK
architectures for salt applications:
 Users interact with telephony applications using a telephone, cell phone, or other mobile device with a microphone and speaker. The hardware architecture for telephony applications, illustrated in Figure 1,
contains:
· Web server—contains HTML, SALT and embedded scripts. The scripts control the
dialog flow, such as the order for playing audio prompts to the caller.
· Telephony server—connects the IP network (and the speech server) to the
telephone network

· Speech server—contains a speech recognition engine which converts spoken speech into text, a speech synthesis engine which converts text to human-sounding speech, and an audio subsystem for playing prompts and responses back to the user.
· Client devices—device to which to user listens and speaks, such as for example mobile telephon

There are numerous variations for the architecture shown in Figure 1. A small speech recognition engine could reside in the user device (for example, to recognize a small number of command and control instructions), or it may be distributed across the device and speech server (the device performs DSP functions on spoken speech, extracting “speech features” that are transmitted to the speech server which concludes the speech recognition processing).

[image: image2.png]
Figure 1

The various servers may be combined or replicated depending upon the workload. And the telephony server could by replaced by internet connections to speech-enabled desktop devices, bypassing the telephone communication system entirely.

Some mobile devices—and most desktop devices—have screens and input devices such as keyboard, mouse, and stylus. These devices support multimodal applications, which support more than one mode of input from the user, including keyed text, handwriting and pen gestures, and spoken speech.

 APPLICATIONS THAT CAN BUILD WITH SALT
· SALT can be used to add speech recognition.

· Synthesis and telephony capabilities to HTML or XHTML based applications.

· Making them accessible from telephones or other GUI–based devices such as PCs, telephones, tablet PCs and wireless personal digital assistants (PDAs).

telephony and multimodal applications using salt

Figure 1 illustrates a sample telephony application written with SALT elements embedded in HTML. Figure3 illustrates the same application as a multimodal application. Figure4 illustrates a typical multimodal application written with SALT embedded in HTML. SALT follows the common GUI practice and

employs an object-oriented, event-driven model to integrate multiple input methods. The technique tracks user’s actions and reports them as events. An object is instantiated for each event to describe the causes. For example, when a user

clicks on a graphical icon, a mouse click event is fired. The mouse-click event object contains information such as coordinates where the click takes place. SALT extends the mechanism for speech input, in which the notion of semantic objects (Wang 2000, Wang 1998) is introduced to capture the meaning of spoken language. When the user says something, speech events, furnished with the corresponding semantic objects, are reported. The semantic objects are structured and categorized. For example, an

utterance “Send mail to John” is composed of two nested semantic objects: “John” representing the semantic type “Person” and the whole utterance the semantic type “Email command.” SALT therefore enables a multimodal integration algorithm based on semantic type compatibility (Wang 2001). The same command can be manifest in a multimodal expression, as in “Send email to him [click]” where the email recipient is given by a point-and-click gesture. Here the semantic type provides a straightforward way to resolve the cross modality reference: the handler for the GUI mouse click event can be programmed into producing a semantic object of the type “Person” which can subsequently be identified as a constituent of the “email command” semantic object. Because the notion of semantic objects is quite generic, dialog designers should find little difficulty employing other multimodal integration algorithms, such as the unification based approach described in (Johnston et al 1997), in SALT.

SALT’s major applications involve telephony and multimodal applications. The following descriptions with the figure illustrate those applications.
• This example uses Microsoft’s Speech Application SDK 1.0:

[image: image3.png]
Figure 2
This figure show the graphical user interface for telephony application .DTMF will be the input.
[image: image4.png]
Figure 3

SALT speech objects encapsulate speech functionality. They resemble to the GUI objects in many ways. Because they share the same high level abstraction, SALT speech objects interoperate with GUI objects in a seamless and consistent manner. Multimodal dialog designers can elect to ignore the modality of communication, much the same way as they are insulated from having to distinguish whether a

text string is entered to a field through a keyboard or cut and pasted with a pointing device.

[image: image5.png]
Figure 4
AN EXAMPLE:
</html> html xmlns:salt = "http://www.saltforum.org/2002/SALT">

 …

 <input name = "txtBoxCity type = "text" />

 <input name = "buttonCityListen" type = "button"

 onClick = "listenCity.Start();"/>

 …

<! - Speech Application Language Tags -->

 <salt:listen id = "listenCity">

 <salt:grammar name = "g_city" src = "city.grxml" />

 <salt:bind targetelement = "txtBoxCity" value = "//city" />

 </salt:listen>

</body>

SALT WITH TELEPHONY
· For applications without a visual display, SALT manages the interactional flow of the dialog and the extent of user initiative by using the HTML eventing and scripting model.

· In this way, the full programmatic control of client-side (or server-side) code is available to application authors for the management of prompt playing and grammar activation.
 In this application, the user may either speak or type to enter values into the text boxes. The codes are different. This is because many telephony applications are system-directed (the system guides the user by asking questions which the user answers), while as with visual-only applications, multimodal applications are often user-directed (the user indicates which data will be entered by clicking a mouse or pointing with a stylus, and then entering the data).
SALT WITH MULTIMODAL
· For multimodal applications, SALT can be added to a visual page to support speech input and/or output. This is a way to speech-enable individual controls, or to add more complex mixed initiative capabilities if necessary.

· A SALT recognition may be started by a browser event such as pen-down on a textbox.
Multimodal interface allows a human user to interaction with the computer using more than one input methods. GUI, for example, is multimodal because a user can interact with the computer using keyboard, stylus, or pointing devices. GUI is an immensely successful concept,notably demonstrated by the World Wide Web.Although the relevant technologies for the Internet had long existed, it was not until the adoption of GUI for the Web did we witness a surge on its usage and rapid improvements in Web applications.Programming with SALT is different from programming traditional visual applications in the following ways:

If the developer does not like how the speech synthesizer renders text as human-understandable voice, the developer may add Speech Synthesis Markup language (SSML) elements to the text to provide hints for the speech synthesis system. For example, the user could insert a <break time = "500ms"/> element to instruct the speech synthesizer to remain silent for 500 milliseconds. SSML is a W3C standard and is used by both SALT and VoiceXML 2.0/2.1.

The developer must supply a grammar to describe the words and phrases users are likely to say. Grammars help the speech recognition system recognize words faster and more accurately. SALT (and VoiceXML 2.0/2.1) developers specify grammars using the Speech Recognition Grammar Specification (SRGS), another W3C standard. Application developers should spend effort to fine-tune the specification of grammars to recognize words frequently spoken by the user at each point in the dialog, as well as fine-tune the wording of the prompts to encourage users to speak those words and phrases.

Speech recognition systems do not understand spoken speech perfectly. (Even humans occasionally misunderstand what others say.) In the best circumstances, speech recognition engines fail to accurately recognize three to five percent of spoken words.

Developers compensate for poor speech recognition by writing event handlers to assist users in overcoming speech recognition problems by prompting the user to speak again, often rephrasing the question differently so the user responds by saying different words.

Developers may spend as much as 30 to 40 percent of their time writing event handlers which are needed occasionally but are essential when the speech recognition system fails. But there are many advantages or benefits for using SALT. They are reuse of application logic, rapid development, speech + GUI application etc. So anybody wanting to speech-enable an application can use SALT and SALT mark-up is a good solution for adding speech.
comparison of salt with voicexml:

SALT and VoiceXML enable very different approaches for developing speech applications. SALT tags control the speech medium (speech synthesis, speech recognition, audio capture, audio replay, and DTMF recognition). SALT tags are often be embedded into another language that specifies flow control and turn taking. On the other hand, VoiceXML is a stand-alone language which controls the speech medium as well as flow control and turn-taking.

In VoiceXML the details of flow control are managed by an a special algorithm called the Forms Interpretation Algorithm. For this reason, many developers consider VoiceXML a declarative language. On the other hand, SALT is frequently embedded into a procedural programming language. Many developers consider the programming languages into which SALT is embedded to be procedural. It should be noted, however, that SALT can be used as a stand-alone declarative language by using the assignment and conditional features of the <bind> statement. Thus, SALT can be used in resource-scarce platforms such as cell phones that cannot support a host language.

While SALT and VoiceXML make it easy to implement speech-enabled applications, it is difficult to design a quality speech application. An HTML programmer easily learns how to write SALT applications, but designing a usable speech or multimodal application is still more of an art than a science. [Balentine and Cohen] present guidelines and heuristics for designing effective speech dialogs. A series of iterative designs and usability tests are necessary to implement speech applications for users to both enjoy and use efficiently to perform their desired computer tasks.
 Voice XML and SALT are both mark-up languages. That describes speech interface. Voice XML is designed for telephony application that is the interactive voice response is the focus. But SALT targets speech application across a whole spectrum. That is it focuses on multimodal interaction. Voice XML contains large number of elements since it defines a data and execution model in addition to a speech interface. And it deals not only with the user interface (<prompt>) but also with data models <form> <field> and procedural programming <if> <goto>. Voice XML has only handful of tags (e.g.: <prompt> <listen>) because it focuses on the speech interface. SALT defines an execution model but instead uses existing execution models (HTML + Java Script). Builds speech applications out of existing web application enables multimodal dialogues on a variety of devices
conclusion

It is not clear at when this article was written if SALT will overtake and replace VoiceXML as the most widely used language for writing telephony applications. It is also not clear if SALT or some other language will become the preferred language for developing multimodal applications. The availability of high-level design tools, code generators, and system development environments that hide the choice of development language from the speech application developer may minimize the importance of programming language choice.
 This paper described the Speech Application Language Tags, or SALT, an

XML based spoken dialog standard for multimodal or speech-only applications. A key premise in SALT design is that speech-enabled user interface shares a lot of the design principles and computational requirements with the graphical user interface (GUI). As a result, it is logical to introduce into speech the object-oriented, event-driven model that is known to be flexible and powerful enough in meeting the requirements for realizing sophisticated GUIs. By reusing this rich infrastructure, dialog designers are

relieved from having to develop the underlying computing infrastructure and can focus more on the core user interface design issues than on the computer and software engineering details. The paper focuses the discussion on the Web-based distributed computing environment and elaborates how SALT can be used to implement multimodal dialog systems. How advanced dialog effects (e.g., cross-modality reference resolution, implicit confirmation, multimedia synchronization) can be realized in SALT is also discussed.

references:
· Cohen P.R, Morgan J., Pollack M.E Intentions in communications, MIT Press, Cambridge MA, 1989
· Aron B. Hyperspeech: navigation in speech-only hypermedia, in Proc. Hypertext-91, Antonio TX, 1991

· Ly E., Schmandt C., Aron B. Speech recognition architectures for multimedia environments, in Proc. AVIOS-93, San Jose, CA,1993
· Lau R., Flammia G., Pao C., Zue V. Webgalaxy: Integrating spoken language and hyptertext navigation, in Proc. EuroSpeech-97,Rhodes, Greece, 1994
· Cisco, Comverse, Intel, Microsoft, Philips and SpeechWorks Found Speech Application Language Tags Forum to Develop New Standard For Multimodal and Telephony-Enabled Applications and Services News@Cisco News release, October 15, 2001
· SALT Forum Speech Application Language Tags Specification, http://www.saltforum.org, 2002

4
DEPT COMPUTER ENGINEERING
GPTC KKM

