Join (SQL)
From Wikipedia, the free encyclopedia
Jump to: navigation, search
An SQL JOIN clause combines records from two or more tables in a database.[1] It creates a set that can be saved as a table or used as is. A JOIN is a means for combining fields from two tables by using values common to each. ANSI standard SQL specifies four types of JOINs: INNER, OUTER, LEFT, and RIGHT. In special cases, a table (base table, view, or joined table) can JOIN to itself in a self-join.
A programmer writes a JOIN predicate to identify the records for joining. If the evaluated predicate is true the combined record is then produced in the expected format, for example a record set or a temporary table.
	Contents
[hide]
· 1 Sample tables
· 2 Inner join
· 2.1 Equi-join
· 2.2 Natural join
· 2.3 Cross join
· 3 Outer joins
· 3.1 Left outer join
· 3.2 Right outer joins
· 3.3 Full outer join
· 4 Self-join
· 4.1 Example
· 5 Alternatives
· 6 Implementation
· 6.1 Join algorithms
· 6.1.1 Nested loops
· 6.1.2 Merge join
· 6.1.3 Hash join
· 7 See also
· 8 Notes
· 9 References
· 10 External links

[edit] Sample tables
All subsequent explanations on join types in this article make use of the following two tables. The rows in these tables serve to illustrate the effect of different types of joins and join-predicates. In the following tables, Department.DepartmentID is the primary key, while Employee.DepartmentID is a foreign key.
	Employee Table

	LastName
	DepartmentID

	Rafferty
	31

	Jones
	33

	Steinberg
	33

	Robinson
	34

	Smith
	34

	John
	NULL

	Department Table

	DepartmentID
	DepartmentName

	31
	Sales

	33
	Engineering

	34
	Clerical

	35
	Marketing

Note: The "Marketing" Department currently has no listed employees. Also, employee "John" has not been assigned to any Department yet.
[edit] Inner join
An inner join is the most common join operation used in applications, and represents the default join-type. Inner join creates a new result table by combining column values of two tables (A and B) based upon the join-predicate. The query compares each row of A with each row of B to find all pairs of rows which satisfy the join-predicate. When the join-predicate is satisfied, column values for each matched pair of rows of A and B are combined into a result row. The result of the join can be defined as the outcome of first taking the Cartesian product (or cross-join) of all records in the tables (combining every record in table A with every record in table B) - then return all records which satisfy the join predicate. Actual SQL implementations normally use other approaches where possible, since computing the Cartesian product is very inefficient.
SQL specifies two different syntactical ways to express joins. The first, called "explicit join notation", uses the keyword JOIN, whereas the second uses the "implicit join notation". The implicit join notation lists the tables for joining in the FROM clause of a SELECT statement, using commas to separate them. Thus, it specifies a cross-join, and the WHERE clause may apply additional filter-predicates. Those filter-predicates function comparably to join-predicates in the explicit notation.
One can further classify inner joins as equi-joins, as natural joins, or as cross-joins (see below).
Programmers should take special care when joining tables on columns that can contain NULL values, since NULL will never match any other value (or even NULL itself), unless the join condition explicitly uses the IS NULL or IS NOT NULL predicates.
As an example, the following query joins the Employee and Department tables using the DepartmentID column of both tables. Where the DepartmentID of these tables match (i.e. the join-predicate is satisfied), the query will combine the LastName, DepartmentID and DepartmentName columns from the two tables into a result row. Where the DepartmentID does not match, no result row is generated.
Example of an explicit inner join:
SELECT *
FROM employee
 INNER JOIN department
 ON employee.DepartmentID = department.DepartmentID
is equivalent to:
SELECT *
FROM employee, department
WHERE employee.DepartmentID = department.DepartmentID
Explicit Inner join result:
	Employee.LastName
	Employee.DepartmentID
	Department.DepartmentName
	Department.DepartmentID

	Robinson
	34
	Clerical
	34

	Jones
	33
	Engineering
	33

	Smith
	34
	Clerical
	34

	Steinberg
	33
	Engineering
	33

	Rafferty
	31
	Sales
	31

Notice that the employee "John" and the department "Marketing" do not appear. Neither of these has any matching records in the respective other table: "John" has no associated department and no employee has the department ID 35. Thus, no information on John or on Marketing appears in the joined table. Depending on the desired results, this behavior may be a subtle bug. Outer joins may be used to avoid it.
[edit] Equi-join
An equi-join, also known as an equijoin, is a specific type of comparator-based join, or theta join, that uses only equality comparisons in the join-predicate. Using other comparison operators (such as <) disqualifies a join as an equi-join. The query shown above has already provided an example of an equi-join:
SELECT *
FROM employee
 INNER JOIN department
 ON employee.DepartmentID = department.DepartmentID
SQL provides an optional shorthand notation for expressing equi-joins, by way of the USING construct (Feature ID F402):
SELECT *
FROM employee
 INNER JOIN department
 USING (DepartmentID)
The USING construct is more than mere syntactic sugar, however, since the result set differs from the result set of the version with the explicit predicate. Specifically, any columns mentioned in the USING list will appear only once, with an unqualified name, rather than once for each table in the join. In the above case, there will be a single DepartmentID column and no employee.DepartmentID or department.DepartmentID.
The USING clause is supported by MySQL, Oracle, PostgreSQL, SQLite, and DB2/400.
[edit] Natural join
A natural join offers a further specialization of equi-joins. The join predicate arises implicitly by comparing all columns in both tables that have the same column-name in the joined tables. The resulting joined table contains only one column for each pair of equally-named columns.
The above sample query for inner joins can be expressed as a natural join in the following way:
SELECT *
FROM employee NATURAL JOIN department
As with the explicit USING clause, only one DepartmentID column occurs in the joined table, with no qualifier:
	DepartmentID
	Employee.LastName
	Department.DepartmentName

	34
	Smith
	Clerical

	33
	Jones
	Engineering

	34
	Robinson
	Clerical

	33
	Steinberg
	Engineering

	31
	Rafferty
	Sales

With either a JOIN USING or NATURAL JOIN, the Oracle database implementation of SQL will report a compile-time error if one of the equijoined columns is specified with a table name qualifier: "ORA-25154: column part of USING clause cannot have qualifier" or "ORA-25155: column used in NATURAL join cannot have qualifier", respectively.
[edit] Cross join
A cross join, cartesian join or product provides the foundation upon which all types of inner joins operate. A cross join returns the cartesian product of the sets of records from the two joined tables. Thus, it equates to an inner join where the join-condition always evaluates to True or where the join-condition is absent from the statement.
If A and B are two sets, then the cross join is written as A × B.
The SQL code for a cross join lists the tables for joining (FROM), but does not include any filtering join-predicate.
Example of an explicit cross join:
SELECT *
FROM employee CROSS JOIN department
Example of an implicit cross join:
SELECT *
FROM employee, department;
	Employee.LastName
	Employee.DepartmentID
	Department.DepartmentName
	Department.DepartmentID

	Rafferty
	31
	Sales
	31

	Jones
	33
	Sales
	31

	Steinberg
	33
	Sales
	31

	Smith
	34
	Sales
	31

	Robinson
	34
	Sales
	31

	John
	NULL
	Sales
	31

	Rafferty
	31
	Engineering
	33

	Jones
	33
	Engineering
	33

	Steinberg
	33
	Engineering
	33

	Smith
	34
	Engineering
	33

	Robinson
	34
	Engineering
	33

	John
	NULL
	Engineering
	33

	Rafferty
	31
	Clerical
	34

	Jones
	33
	Clerical
	34

	Steinberg
	33
	Clerical
	34

	Smith
	34
	Clerical
	34

	Robinson
	34
	Clerical
	34

	John
	NULL
	Clerical
	34

	Rafferty
	31
	Marketing
	35

	Jones
	33
	Marketing
	35

	Steinberg
	33
	Marketing
	35

	Smith
	34
	Marketing
	35

	Robinson
	34
	Marketing
	35

	John
	NULL
	Marketing
	35

The cross join does not apply any predicate to filter records from the joined table. Programmers can further filter the results of a cross join by using a WHERE clause.
[edit] Outer joins
An outer join does not require each record in the two joined tables to have a matching record. The joined table retains each record—even if no other matching record exists. Outer joins subdivide further into left outer joins, right outer joins, and full outer joins, depending on which table(s) one retains the rows from (left, right, or both).
(In this case left and right refer to the two sides of the JOIN keyword.)
No implicit join-notation for outer joins exists in standard SQL.
[edit] Left outer join
The result of a left outer join (or simply left join) for table A and B always contains all records of the "left" table (A), even if the join-condition does not find any matching record in the "right" table (B). This means that if the ON clause matches 0 (zero) records in B, the join will still return a row in the result—but with NULL in each column from B. This means that a left outer join returns all the values from the left table, plus matched values from the right table (or NULL in case of no matching join predicate). If the left table returns one row and the right table returns more than one matching row for it, the values in the left table will be repeated for each distinct row on the right table.
For example, this allows us to find an employee's department, but still shows the employee(s) even when their department does not exist (contrary to the inner-join example above, where employees in non-existent departments are excluded from the result).
Example of a left outer join, with the additional result row italicized:
SELECT *
FROM employee LEFT OUTER JOIN department
 ON employee.DepartmentID = department.DepartmentID
	Employee.LastName
	Employee.DepartmentID
	Department.DepartmentName
	Department.DepartmentID

	Jones
	33
	Engineering
	33

	Rafferty
	31
	Sales
	31

	Robinson
	34
	Clerical
	34

	Smith
	34
	Clerical
	34

	John
	NULL
	NULL
	NULL

	Steinberg
	33
	Engineering
	33

[edit] Right outer joins
A right outer join (or right join) closely resembles a left outer join, except with the treatment of the tables reversed. Every row from the "right" table (B) will appear in the joined table at least once. If no matching row from the "left" table (A) exists, NULL will appear in columns from A for those records that have no match in A.
A right outer join returns all the values from the right table and matched values from the left table (NULL in case of no matching join predicate).
For example, this allows us to find each employee and his or her department, but still show departments that have no employees.
Example right outer join, with the additional result row italicized:
SELECT *
FROM employee RIGHT OUTER JOIN department
 ON employee.DepartmentID = department.DepartmentID
	Employee.LastName
	Employee.DepartmentID
	Department.DepartmentName
	Department.DepartmentID

	Smith
	34
	Clerical
	34

	Jones
	33
	Engineering
	33

	Robinson
	34
	Clerical
	34

	Steinberg
	33
	Engineering
	33

	Rafferty
	31
	Sales
	31

	NULL
	NULL
	Marketing
	35

In practice, explicit right outer joins are rarely used, since they can always be replaced with left outer joins (with the table order switched) and provide no additional functionality. The result above is produced also with a left outer join:
SELECT *
FROM department LEFT OUTER JOIN employee
 ON employee.DepartmentID = department.DepartmentID;;;
[edit] Full outer join
A full outer join combines the results of both left and right outer joins. The joined table will contain all records from both tables, and fill in NULLs for missing matches on either side.
For example, this allows us to see each employee who is in a department and each department that has an employee, but also see each employee who is not part of a department and each department which doesn't have an employee.
Example full outer join:
SELECT *
FROM employee
 FULL OUTER JOIN department
 ON employee.DepartmentID = department.DepartmentID
	Employee.LastName
	Employee.DepartmentID
	Department.DepartmentName
	Department.DepartmentID

	Smith
	34
	Clerical
	34

	Jones
	33
	Engineering
	33

	Robinson
	34
	Clerical
	34

	John
	NULL
	NULL
	NULL

	Steinberg
	33
	Engineering
	33

	Rafferty
	31
	Sales
	31

	NULL
	NULL
	Marketing
	35

Some database systems (like MySQL) do not support this functionality directly, but they can emulate it through the use of left and right outer joins and unions. The same example can appear as follows:
SELECT *
FROM employee
 LEFT JOIN department
 ON employee.DepartmentID = department.DepartmentID
UNION ALL
SELECT *
FROM employee
 RIGHT JOIN department
 ON employee.DepartmentID = department.DepartmentID
WHERE employee.DepartmentID IS NULL
SQLite does not support right join, so outer join can be emulated as follows:
SELECT employee.*, department.*
FROM employee
 LEFT JOIN department
 ON employee.DepartmentID = department.DepartmentID
UNION ALL
SELECT employee.*, department.*
FROM department
 LEFT JOIN employee
 ON employee.DepartmentID = department.DepartmentID
WHERE employee.DepartmentID IS NULL
[edit] Self-join
A self-join is joining a table to itself.[2] This is best illustrated by the following example.
[edit] Example
A query to find all pairings of two employees in the same country is desired. If you had two separate tables for employees and a query which requested employees in the first table having the same country as employees in the second table, you could use a normal join operation to find the answer table. However, all the employee information is contained within a single large table. [3]
Considering a modified Employee table such as the following:
	Employee Table

	EmployeeID
	LastName
	Country
	DepartmentID

	123
	Rafferty
	Australia
	31

	124
	Jones
	Australia
	33

	145
	Steinberg
	Australia
	33

	201
	Robinson
	United States
	34

	305
	Smith
	United Kingdom
	34

	306
	John
	United Kingdom
	NULL

An example solution query could be as follows:
SELECT F.EmployeeID, F.LastName, S.EmployeeID, S.LastName, F.Country
FROM Employee F, Employee S
WHERE F.Country = S.Country
AND F.EmployeeID < S.EmployeeID
ORDER BY F.EmployeeID, S.EmployeeID;
Which results in the following table being generated.
	Employee Table after Self-join by Country

	EmployeeID
	LastName
	EmployeeID
	LastName
	Country

	123
	Rafferty
	124
	Jones
	Australia

	123
	Rafferty
	145
	Steinberg
	Australia

	124
	Jones
	145
	Steinberg
	Australia

	305
	Smith
	306
	John
	United Kingdom

For this example, note that:
· F and S are aliases for the first and second copies of the employee table.
· The condition F.Country = S.Country excludes pairings between employees in different countries. The example question only wanted pairs of employees in the same country.
· The condition F.EmployeeID < S.EmployeeID excludes pairings where the EmployeeIDs are the same.
· F.EmployeeID < S.EmployeeID also excludes duplicate pairings. Without it only the following less useful part of the table would be generated (for the United Kingdom only shown):
	EmployeeID
	LastName
	EmployeeID
	LastName
	Country

	305
	Smith
	305
	Smith
	United Kingdom

	305
	Smith
	306
	John
	United Kingdom

	306
	John
	305
	Smith
	United Kingdom

	306
	John
	306
	John
	United Kingdom

Only one of the two middle pairings is needed to satisfy the original question, and the topmost and bottommost are of no interest at all in this example.
[edit] Alternatives
The effect of outer joins can also be obtained using correlated subqueries. For example
SELECT employee.LastName, employee.DepartmentID, department.DepartmentName
FROM employee LEFT OUTER JOIN department
 ON employee.DepartmentID = department.DepartmentID
can also be written as
SELECT employee.LastName, employee.DepartmentID,
 (SELECT department.DepartmentName
 FROM department
 WHERE employee.DepartmentID = department.DepartmentID)
FROM employee
[edit] Implementation
Much work in database-systems has aimed at efficient implementation of joins, because relational systems commonly call for joins, yet face difficulties in optimising their efficient execution. The problem arises because (inner) joins operate both commutatively and associatively. In practice, this means that the user merely supplies the list of tables for joining and the join conditions to use, and the database system has the task of determining the most efficient way to perform the operation. A query optimizer determines how to execute a query containing joins. A query optimizer has two basic freedoms:
1. Join order: Because joins function commutatively and associatively, the order in which the system joins tables does not change the final result-set of the query. However, join-order does have an enormous impact on the cost of the join operation, so choosing the best join order becomes very important.
2. Join method: Given two tables and a join condition, multiple algorithms can produce the result-set of the join. Which algorithm runs most efficiently depends on the sizes of the input tables, the number of rows from each table that match the join condition, and the operations required by the rest of the query.
Many join-algorithms treat their inputs differently. One can refer to the inputs to a join as the "outer" and "inner" join operands, or "left" and "right", respectively. In the case of nested loops, for example, the database system will scan the entire inner relation for each row of the outer relation.
One can classify query-plans involving joins as follows:[4]
left-deep
using a base table (rather than another join) as the inner operand of each join in the plan
right-deep
using a base table as the outer operand of each join in the plan
bushy
neither left-deep nor right-deep; both inputs to a join may themselves result from joins
These names derive from the appearance of the query plan if drawn as a tree, with the outer join relation on the left and the inner relation on the right (as convention dictates).
[edit] Join algorithms
Three fundamental algorithms exist for performing a join operation.
[edit] Nested loops
Main articles: Nested loop join and block nested loop
Use of nested loops produces the simplest join-algorithm. For each tuple in the outer join relation, the system scans the entire inner-join relation and appends any tuples that match the join-condition to the result set. Naturally, this algorithm performs poorly with large join-relations: inner or outer or both. An index on columns in the inner relation in the join-predicate can enhance performance.
The block nested loops (BNL) approach offers a refinement to this technique: for every block in the outer relation, the system scans the entire inner relation. For each match between the current inner tuple and one of the tuples in the current block of the outer relation, the system adds a tuple to the join result-set. This variant means doing more computation for each tuple of the inner relation, but far fewer scans of the inner relation.
[edit] Merge join
If both join relations come in order, sorted by the join attribute(s), the system can perform the join trivially, thus:
1. Consider the current "group" of tuples from the inner relation; a group consists of a set of contiguous tuples in the inner relation with the same value in the join attribute.
2. For each matching tuple in the current inner group, add a tuple to the join result. Once the inner group has been exhausted, advance both the inner and outer scans to the next group.
Merge joins offer one reason why many optimizers keep track of the sort order produced by query plan operators—if one or both input relations to a merge join arrives already sorted on the join attribute, the system need not perform an additional sort. Otherwise, the DBMS will need to perform the sort, usually using an external sort to avoid consuming too much memory.
See also: Sort-Merge Join
[edit] Hash join
Main article: Hash join
A hash join algorithm can only produce equi-joins. The database system pre-forms access to the tables concerned by building hash tables on the join-attributes. The lookup in hash tables operates much faster than through index trees. However, one can compare hashed values only for equality, not for other relationships.

