
Datorarkitektur I Fö 10- 1

Petru Eles, IDA, LiTH

SUPERSCALAR AND VLIW PROCESSORS

1. What is a Superscalar Architecture?

3. Features of Superscalar Architectures

4. Data Dependencies

5. Policies for Parallel Instruction Execution

6. Register Renaming

7. VLIW Processors

Datorarkitektur I Fö 10- 2

Petru Eles, IDA, LiTH

What is a Super scalar Ar chitecture?

• A superscalar architecture is one in which several
instructions can be initiated simultaneously and
executed independently.

• Pipelining allows several instructions to be
executed at the same time, but they have to be in
different pipeline stages at a given moment.

• Superscalar architectures include all features of
pipelining but, in addition, there can be several
instructions executing simultaneously in the same
pipeline stage.

Datorarkitektur I Fö 10- 3

Petru Eles, IDA, LiTH

What is a Superscalar Architecture? (cont’d)

Pipelined execution

Superscalar execution

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4

Instr. i+5

CO FO EI WO

9 10 11

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI

1 2 83 4 5 6 7Clock cycle →

Instr. i

Instr. i+1

Instr. i+2

Instr. i+3

Instr. i+4

Instr. i+5

CO FO EI WO

9 10 11

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

FI DI CO FO EI WO

Datorarkitektur I Fö 10- 4

Petru Eles, IDA, LiTH

Super scalar Ar chitectures

• Superscalar architectures allow several instructions
to be issued and completed per clock cycle.

• A superscalar architecture consists of a number of
pipelines that are working in parallel.

• Depending on the number and kind of parallel units
available, a certain number of instructions can be
executed in parallel.

• In the following example a floating point and two in-
teger operations can be issued and executed simul-
taneously; each unit is pipelined and can execute
several operations in different pipeline stages.

Datorarkitektur I Fö 10- 5

Petru Eles, IDA, LiTH

In
st

r.
bu

ffe
r

D
ec

od
e

&
R

en
am

e
&

D
is

pa
tc

h

F
lo

at
in

g
po

in
t u

ni
t

In
st

r.
w

in
do

w
(q

ue
ue

s,
re

se
rv

at
io

n
st

at
io

ns
, e

tc
.)

In
te

ge
r

un
it

In
te

ge
r

un
it

Memory

Instruction
cache

F
et

ch
 &

A
dd

r.
ca

lc
. &

B
ra

nc
h

pr
ed

.

R
eg

is
te

r
F

ile
s

C
om

m
it

Instruction
issuing

S
up

er
sc

al
ar

 A
rc

hi
te

ct
ur

es
 (

co
nt

’d
)

Datorarkitektur I Fö 10- 6

Petru Eles, IDA, LiTH

Limitations on P arallel Ex ecution

• The situations which prevent instructions to be
executed in parallel by a superscalar architecture
are very similar to those which prevent an efficient
execution on any pipelined architecture (see
pipeline hazards - lecture 6/7).

• The consequences of these situations on
superscalar architectures are more severe than
those on simple pipelines, because the potential of
parallelism in superscalars is greater and, thus, a
greater opportunity is lost.

Datorarkitektur I Fö 10- 7

Petru Eles, IDA, LiTH

Limitations on Parallel Execution (cont’d)

• Three categories of limitations have to be considered:

1. Resource conflicts:
- They occur if two or more instructions

compete for the same resource (register,
memory, functional unit) at the same time;
they are similar to structural hazards dis-
cussed with pipelines. Introducing several
parallel pipelined units, superscalar archi-
tectures try to reduce a part of possible re-
source conflicts.

2. Control (procedural) dependency:
- The presence of branches creates major

problems in assuring an optimal parallel-
ism. How to reduce branch penalties has
been discussed in lectures 7&8.

- If instructions are of variable length, they
cannot be fetched and issued in parallel;
an instruction has to be decoded in order
to identify the following one and to fetch it
⇒ superscalar techniques are efficiently
applicable to RISCs, with fixed instruction
length and format.

3. Data conflicts:
- Data conflicts are produced by data de-

pendencies between instructions in the
program. Because superscalar architec-
tures provide a great liberty in the order in
which instructions can be issued and
completed, data dependencies have to be
considered with much attention.

Datorarkitektur I Fö 10- 8

Petru Eles, IDA, LiTH

Data Dependencies

• Three types of data dependencies can be
identified:

1. True data dependency

2. Output dependency

3. Antidependency

Datorarkitektur I Fö 10- 9

Petru Eles, IDA, LiTH

True Data Dependency

• True data dependency exists when the output of
one instruction is required as an input to a
subsequent instruction:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R2,R4,R5 R2 ← R4 + R5

• True data dependencies are intrinsic features of the
user’s program. They cannot be eliminated by
compiler or hardware techniques.

• True data dependencies have to be detected and
treated: the addition above cannot be executed
before the result of the multiplication is available.

- The simplest solution is to stall the adder until
the multiplier has finished.

- In order to avoid the adder to be stalled, the
compiler or hardware can find other instructions
which can be executed by the adder until the re-
sult of the multiplication is available.

Datorarkitektur I Fö 10- 10

Petru Eles, IDA, LiTH

Output Dependency

• An output dependency exists if two instructions are
writing into the same location; if the second
instruction writes before the first one, an error
occurs:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

Antidependency

• An antidependency exists if an instruction uses a
location as an operand while a following one is
writing into that location; if the first one is still using
the location when the second one writes into it, an
error occurs:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

Datorarkitektur I Fö 10- 11

Petru Eles, IDA, LiTH

The Nature of Output Dependency and Antidependency

• Output dependencies and antidependencies are
not intrinsic features of the executed program; they
are not real data dependencies but storage
conflicts.

• Output dependencies and antidependencies are
only the consequence of the manner in which the
programmer or the compiler are using registers (or
memory locations). They are produced by the com-
petition of several instructions for the same register.

• In the previous examples the conflicts are produced
only because:

- the output dependency: R4 is used by both in-
structions to store the result;

- the antidependency: R3 is used by the second
instruction to store the result;

• The examples could be written without
dependencies by using additional registers:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R7,R2,R5 R7 ← R2 + R5

and
MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R6,R2,R5 R6 ← R2 + R5

Datorarkitektur I Fö 10- 12

Petru Eles, IDA, LiTH

Policies f or Parallel Instruction Ex ecution

• The ability of a superscalar processor to execute
instructions in parallel is determined by:

1. the number and nature of parallel pipelines
(this determines the number and nature of in-
structions that can be fetched and executed at
the same time);

2. the mechanism that the processor uses to find
independent instructions (instructions that can
be executed in parallel).

• The policies used for instruction execution are
characterized by the following two factors:

1. the order in which instructions are issued for
execution;

2. the order in which instructions are completed
(they write results into registers and memory
locations).

Datorarkitektur I Fö 10- 13

Petru Eles, IDA, LiTH

Policies for Parallel Instruction Execution (cont’d)

• The simplest policy is to execute and complete
instructions in their sequential order. This, however,
gives little chances to find instructions which can be
executed in parallel.

• In order to improve parallelism the processor has to
look ahead and try to find independent instructions
to execute in parallel.

Instructions will be executed in an order different
from the strictly sequential one, with the
restriction that the result must be correct .

• Execution policies:
1. In-order issue with in-order completion.
2. In-order issue with out-of-order completion.
3. Out-of-order issue with out-of-order completion.

Datorarkitektur I Fö 10- 14

Petru Eles, IDA, LiTH

Policies for Parallel Instruction Execution (cont’d)

Example

We consider the superscalar architecture:
• Two instructions can be fetched and decoded at a

time;
• Three functional units can work in parallel: floating

point unit, integer adder, integer multiplier;
• Two instructions can be written back (completed) at

a time;

We consider the following instruction sequence:

I1: ADDF R12,R13,R14 R12 ← R13 + R14 (float. pnt.)
I2: ADD R1,R8,R9 R1 ← R8 + R9
I3: MUL R4,R2,R3 R4 ← R2 * R3
I4: MUL R5,R6,R7 R5 ← R6 * R7
I5: ADD R10,R5,R7 R10 ← R5 + R7
I6: ADD R11,R2,R3 R11 ← R2 + R3

• I1 requires two cycles to execute;
• I3 and I4 are in conflict for the same functional unit;
• I5 depends on the value produced by I4 (we have a

true data dependency between I4 and I5);
• I2, I5 and I6 are in conflict for the same functional

unit;

Datorarkitektur I Fö 10- 15

Petru Eles, IDA, LiTH

In-Order Issue with In-Or der Completion

• Instructions are issued in the exact order that would
correspond to sequential execution;
results are written (completion) in the same order.

- An instruction cannot be issued before the pre-
vious one has been issued;

- An instruction completes only after the previous
one has completed.

- To guarantee in-order completion, instruction is-
suing stalls when there is a conflict and when
the unit requires more than one cycle to execute;

Decode/
Issue Execute Writeback/

Complete Cycle

I1 I2 1

I3 I4 I1 I2 2

I5 I6 I1 3

I3 I1 I2 4

I4 I3 5

I5 I4 6

I6 I5 7

I6 8

Datorarkitektur I Fö 10- 16

Petru Eles, IDA, LiTH

In-Order Issue with In-Order Completion (cont’d)

• The processor detects and handles (by stalling)
true data dependencies and resource conflicts.

• As instructions are issued and completed in their
strict order, the resulting parallelism is very much
dependent on the way the program is written/
compiled.

If I3 and I6 switch position, the pairs I6-I4 and I5-I3
can be executed in parallel (see following slide).

• We are interested in techniques which are not
compiler based but allow the hardware alone to
detect instructions which can be executed in
parallel and to issue them.

Datorarkitektur I Fö 10- 17

Petru Eles, IDA, LiTH

In-Order Issue with In-Order Completion (cont’d)

If the compiler generates this sequence:

I1: ADDF R12,R13,R14 R12 ← R13 + R14 (float. pnt.)
I2: ADD R1,R8,R9 R1 ← R8 + R9
I6: ADD R11,R2,R3 R11 ← R2 + R3
I4: MUL R5,R6,R7 R5 ← R6 * R7
I5: ADD R10,R5,R7 R10 ← R5 + R7
I3: MUL R4,R2,R3 R4 ← R2 * R3

I6-I4 and I5-I3 could be executed in parallel

• The sequence needs only 6 cycles instead of 8.

Decode/
Issue Execute Writeback/

Complete Cycle

I1 I2 1

I6 I4 I1 I2 2

I5 I3 I1 3

I6 I4 I1 I2 4

I5 I3 I6 I4 5

I5 I3 6

7

8

Datorarkitektur I Fö 10- 18

Petru Eles, IDA, LiTH

In-Order Issue with In-Order Completion (cont’d)

• With in-order issue&in-order completion the
processor has not to bother about output-
dependency and antidependency! It has only to
detect true data dependencies .

No one of the two dependencies will be violated if
instructions are issued/completed in-order :

output dependency

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

Antidependency

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

Datorarkitektur I Fö 10- 19

Petru Eles, IDA, LiTH

Out-of-Or der Issue with Out-of-Or der Completion

• With in-order issue, no new instruction can be
issued when the processor has detected a conflict
and is stalled, until after the conflict has been
resolved.

The processor is not allowed to look ahead for
further instructions, which could be executed in
parallel with the current ones.

• Out-of-order issue tries to resolve the above
problem. Taking the set of decoded instructions the
processor looks ahead and issues any instruction,
in any order, as long as the program execution is
correct.

Datorarkitektur I Fö 10- 20

Petru Eles, IDA, LiTH

Out-of-Order Issue with Out-of-Order Completion
(cont’d)

We consider the instruction sequence in slide 15.
• I6 can be now issued before I5 and in parallel with

I4; the sequence takes only 6 cycles (compared to
8 if we have in-order issue&in-order completion).

Decode/
Issue Execute Writeback/

Complete Cycle

I1 I2 1

I3 I4 I1 I2 2

I5 I6 I1 I3 I2 3

I6 I4 I1 I3 4

I5 I4 I6 5

I5 6

7

8

Datorarkitektur I Fö 10- 21

Petru Eles, IDA, LiTH

Out-of-Order Issue with Out-of-Order Completion
(cont’d)

• With out-of-order issue&out-of-order completion
the processor has to bother about true data
dependency and both about output-dependency
and antidependency !

Output dependency can be violated (the addition
completes before the multiplication):

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

Antidependency can be violated (the operand in R3 is
used after it has been over-written):

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

Datorarkitektur I Fö 10- 22

Petru Eles, IDA, LiTH

Register Renaming

• Output dependencies and antidependencies can
be treated similarly to true data dependencies as
normal conflicts. Such conflicts are solved by
delaying the execution of a certain instruction until it
can be executed.

• Parallelism could be improved by eliminating output
dependencies and antidependencies, which are
not real data dependencies (see slide 12).

• Output dependencies and antidependencies can
be eliminated by automatically allocating new
registers to values, when such a dependency has
been detected. This technique is called register
renaming .

The output dependency is eliminated by allocating, for
example, R6 to the value R2+R5:

MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R4,R2,R5 R4 ← R2 + R5

(ADD R6,R2,R5 R6 ← R2 + R5)

The same is true for the antidependency below:
MUL R4,R3,R1 R4 ← R3 * R1
- - - - - - - - - - - - - -
ADD R3,R2,R5 R3 ← R2 + R5

(ADD R6,R2,R5 R6 ← R2 + R5)

Datorarkitektur I Fö 10- 23

Petru Eles, IDA, LiTH

Final Comments on Super scalar s

• The following main techniques are characteristic for
superscalar processors:

1. additional pipelined units which are working in
parallel;

2. out-of-order issue&out-of-order completion;
3. register renaming.

• All of the above techniques are aimed to enhance
performance.

• Experiments have shown:
- without the other techniques, only adding addi-

tional units is not efficient;
- out-of-order issue is extremely important; it al-

lows to look ahead for independent instructions;
- register renaming can improve performance

with more than 30%; in this case performance
is limited only by true dependencies.

- it is important to provide a fetching/decoding
capacity so that ~16 instructions are buffered
for lookahead.

Datorarkitektur I Fö 10- 24

Petru Eles, IDA, LiTH

Some Ar chitectures

PowerPC 604
• six independent execution units:

- Branch execution unit
- Load/Store unit
- 3 Integer units
- Floating-point unit

• in-order issue
Power PC 620

• provides in addition to the 604 out-of-order issue

Pentium
• three independent execution units:

- 2 Integer units
- Floating point unit

• in-order issue

Pentium II
• provides in addition to the Pentium out-of-order

issue
• five instructions can be issued in one cycle

Datorarkitektur I Fö 10- 25

Petru Eles, IDA, LiTH

What is Good and what is Bad
with Super scalar s ?

Good
• The hardware solves everything:

- Hardware detects potential parallelism between
instructions;

- Hardware tries to issue as many instructions as
possible in parallel.

- Hardware solves register renaming.
• Binary compatibility

- If functional units are added in a new version of
the architecture or some other improvements
have been made to the architecture (without
changing the instruction sets), old programs
can benefit from the additional potential of
parallelism.
Why?
Because the new hardware will issue the old
instruction sequence in a more efficient way.

Bad
• Very complex

- Much hardware is needed for run-time
detection. There is a limit in how far we can go
with this technique.

- Power consumption can be very large!
• The window of execution is limited ⇒ this limits the

capacity to detect potentially parallel instructions

Datorarkitektur I Fö 10- 26

Petru Eles, IDA, LiTH

The Alternative: VLIW Pr ocessor s

• VLIW architectures rely on compile-time detection
of parallelism ⇒ the compiler analysis the program
and detects operations to be executed in parallel;
such operations are packed into one “large”
instruction.

• After one instruction has been fetched all the
corresponding operations are issued in parallel.

• No hardware is needed for run-time detection of
parallelism.

• The window of execution problem is solved: the
compiler can potentially analyse the whole program
in order to detect parallel operations.

Datorarkitektur I Fö 10- 27

Petru Eles, IDA, LiTH

VLIW Processor s

• Detection of parallelism and packaging of
operations into instructions is done, by the
compiler, off-line.

op1 po op3 op4

op1 op2 op4

op1 op2 op3 op4

empty

empty

instruction - 1

instruction - 2

instruction - 3

Datorarkitektur I Fö 10- 28

Petru Eles, IDA, LiTH

VLIW Processors (cont’d)

Instruction
fetch
unit

FU-1

Memory

R
egister F

iles

Instruction
decode

unit

FU-2

FU-3

FU-4

FU-n

FUs
Reg. File

Execution unit

Datorarkitektur I Fö 10- 29

Petru Eles, IDA, LiTH

Advantages and Problems with VLIW Processor s

Advantages
• Simpler hardware:

- the number of FUs can be increased without
needing additional sophisticated hardware to
detect parallelism, like in superscalars.

- Power consumption can be reduced.
• Good compilers can detect parallelism based on

global analysis of the whole program (no window of
execution problem).

Problems
• Large number of registers needed in order to keep

all FUs active (to store operands and results).
• Large data transport capacity is needed between

FUs and the register file and between register files
and memory.

• High bandwidth between instruction cache and
fetch unit.
Example: one instruction with 7 operations, each 24
bits ⇒ 168 bits/instruction.

• Large code size, partially because unused
operations ⇒ wasted bits in instruction word.

• Incomputability of binary code
For example:
If for a new version of the processor additional FUs
are introduced ⇒ the number of operations
possible to execute in parallel is increased ⇒ the
instruction word changes ⇒ old binary code cannot
be run on this processor.

