Artificial Neural networks:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products for society. Such is the case of the implementation of artificial life as well as giving solution to interrogatives that linear systems are not able resolve.
An artificial neural network is a system based on the operation of biological neural networks, in other words, is using approach of biological neural system. A neural network is a parallel system, capable of resolving methods that linear computing cannot. (eg of Ann pattern recognition, prediction, system identification and controller.)Consider an image processing task such as recognizing an everyday object projected against a background of other objects. This is a task that even a small child's brain can solve in a few tenths of a second. But building a conventional serial machine to perform as well is incredibly complex. However, that same child might NOT be capable of calculating 2+2=4, while the serial machine solves it in a few nanoseconds.

Advantages:
· A neural network can perform tasks that a linear program can not.

· When an element of the neural network fails, it can continue without any problem by their parallel nature.

· A neural network learns and does not need to be reprogrammed.

· It can be implemented in any application.

· It can be implemented without any problem.

Disadvantages:
· The neural network needs training to operate.

· The architecture of a neural network is different from the architecture of microprocessors therefore needs to be emulated.

· Requires high processing time for large neural networks.

Another aspect of the artificial neural networks is that there are different architectures, which consequently requires different types of algorithms, but despite to be an apparently complex system, a neural network is relatively simple.

In the world of engineering, neural networks have two main functions: Pattern classifiers and as non linear adaptive filters. As its biological predecessor,(mimics neurons) an artificial neural network is an adaptive system. By adaptive, it means that each parameter is changed during its operation and it is deployed for solving the problem in matter. This is called the training phase.

A artificial neural network is developed with a systematic step-by-step procedure which optimizes a criteria commonly known as the learning rule. The input/output training data is fundamental for these networks as it conveys the information which is necessary to discover the optimal operating point. In addition, a non linear nature makes neural network processing elements a very flexible system.

Basically, an artificial neural network is a system. A system is a structure that receives an input, process the data, and provides an output. Commonly, the input consists in a data array which can be anything such as data from an image file, a WAVE sound or any kind of data that can be represented in an array. Once an input is presented to the neural network, and a corresponding desired or target response is set at the output, an error is composed from the difference of the desired response and the real system output.

The error information is fed back to the system which makes all adjustments to their parameters in a systematic fashion (commonly known as the learning rule). This process is repeated until the desired output is acceptable. It is important to notice that the performance hinges heavily on the data.

The Biological Model

Artificial neural networks born after McCulloch and Pitts introduced a set of simplified neurons in 1943. These neurons were represented as models of biological networks into conceptual components for circuits that could perform computational tasks. The basic model of the artificial neuron is founded upon the functionality of the biological neuron. By definition, “Neurons are basic signaling units of the nervous system of a living being in which each neuron is a discrete cell whose several processes are from its cell body”

[image: image1.jpg]
The biological neuron has four main regions to its structure. The cell body, or soma, the heart of the str. It contains the nucleolus and maintains protein synthesis. And it has two offshoots from it.
 The dendrites receive signal from other neurons.

axon conduct electrical signals generated at the axon hillock down its length. These signals are called action potentials

synaptic terminals The electrical signals (action potential) that the neurons use to convey the information of the brain are all identical. The brain can determine which type of information is being received based on the path of the signal.

The neuron sending the signal is called pre-synaptic cell and the neuron receiving the electrical signal is called postsynaptic cell.
The synapse is the area of contact between two neurons. They do not physically touch because they are separated by a cleft. The electric signals are sent through chemical interaction. The electrical signals are generated by the membrane potential which is based on differences in concentration of sodium and potassium ions and outside the cell membrane.

Classifiction

Unipolar neurons have a single process. Their dendrites and axon are located on the same stem. These neurons are found in invertebrates.

Bipolar neurons have two processes. Their dendrites and axon have two separated processes too.

Multipolar neurons: These are commonly found in mammals. Some examples of these neurons are spinal motor neurons, pyramidal cells and purkinje cells.

The Mathematical Model

For an artificial neuron, the weight is a number, and represents the synapse. A negative weight reflects an inhibitory connection, while positive values designate excitatory connections. The following components of the model represent the actual activity of the neuron cell. All inputs are summed altogether and modified by the weights. This activity is referred as a linear combination. Finally, an activation function controls the amplitude of the output. For example, an acceptable range of output is usually between 0 and 1, or it could be -1 and 1.Mathematically, this process is described in the figure

(Excitation - Excitatory neurotransmitters increase the likelihood of the next neurone in the chain to fire.

Inhibition - Inhibitory neurotransmitters decrease the likelihood of the next neurone to fire.)

[image: image2.jpg]
From this model the interval activity of the neuron can be shown to be:

[image: image3.jpg]
The output of the neuron, yk, would therefore be the outcome of some activation function on the value of vk. The output of a neuron in a neural network is between certain values (usually 0 and 1, or -1 and 1)

Activation functions

 In general, there are three types of activation functions, denoted by Φ(.) .
Threshold Function which takes on a value of 0 if the summed input is less than a certain threshold value (v), and the value 1 if the summed input is greater than or equal to the threshold value.
[image: image4.jpg]
 Piecewise-Linear function. This function again can take on the values of 0 or 1, but can also take on values between that depending on the amplification factor in a certain region of linear operation.
[image: image5.jpg]

Sigmoid function. This function can range between 0 and 1, but it is also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is the hyperbolic tangent function.
[image: image6.jpg]
[image: image7.jpg]
The artificial neural networks which we describe are all variations on the parallel distributed processing (PDP) idea. The architecture of each neural network is based on very similar building blocks which perform the processing.

A framework for distributed representation

An artificial neural network consists of a pool of simple processing units which communicate by sending signals to each other over a large number of weighted connections. A set of major aspects of a parallel distributed model can be distinguished :

· a set of processing units ('neurons,' 'cells');

· a state of activation yk for every unit, which equivalent to the output of the unit;

· connections between the units. Generally each connection is defined by a weight wjk which determines the effect which the signal of unit j has on unit k;

· a propagation rule, which determines the effective input sk of a unit from its external inputs;

· an activation function Fk, which determines the new level of activation based on the effective input sk(t) and the current activation yk(t) (i.e., the update);

· an external input (aka bias, offset) øk for each unit;

· the learning rule parameter denoted as neta n or c;

· an environment within which the system must operate, providing input signals and|if necessary|error signals.

Processing units

· Receive input from external or neighboring source and in turn compute output signal which is propagated to other units with adjustment of weight.

Within neural systems it is useful to distinguish three types of units:
· input units (index i) which receive data from outside the neural network,
· output units (index o) which send data out of the neural network,
· hidden units (index h) whose input and output signals remain within the neural network.
· Synchronous updating: all units update their activation simultaneously

· Asynchronous updating: each unit has a fixed probability of updating its activation at a time t, and usually only one unit will be able to do this at a time.

Neural Network topologies

· Feed-forward neural networks : where the data flow from input to output units is feedforward. The data processing can extend over multiple (layers of) units, but no feedback connections are present, that is, connections extending from outputs of units to inputs of units in the same or previous layers. Eg. Perceptron &Adaline
· Recurrent neural networks: that contain feedback connections error correction. In some cases, the activation values of the units undergo stable state In other applications, the change of the activation values of the output neurons are significant, such that the dynamical behavior constitutes the output of the neural network. Eg Anderson, Kohonen , and Hopfield.

Training of artificial neural networks

A neural network has to be configured such that the application of a set of inputs produces the desired set of outputs. Weights can be adjusted explicitly, using a priori knowledge or by 'training' the neural network by feeding it teaching patterns categories of learning are:

· Supervised learning or Associative learning in which the network is trained by providing it with input and matching output patterns. These input-output pairs can be provided by an external teacher, or by the system which contains the neural network (self-supervised).
· Unsupervised learning or Self-organisation in which an (output) unit is trained to respond to clusters of pattern within the input. In this paradigm the system is supposed to discover statistically salient features of the input population. Unlike the supervised learning paradigm, there is no a priori set of categories into which the patterns are to be classified; rather the system must develop its own representation of the input stimuli.

· Reinforcement Learning This type of learning may be considered as an intermediate form of the above two types of learning. Here the learning machine does some action on the environment and gets a feedback response from the environment. The learning system grades its action good (rewarding) or bad (punishable) based on the environmental response and accordingly adjusts its parameters. Generally, parameter adjustment is continued until an equilibrium state occurs, following which there will be no more changes in its parameters. The selforganizing neural learning may be categorized under this type of learning.

Modifying patterns of connectivity of Neural Networks

Both learning paradigms supervised learning and unsupervised learning result in an adjustment of the weights of the connections between units, according to some modification rule. Virtually all learning rules for models of this type can be considered as a variant of the Hebbian learning rule suggested by Hebb in his classic book Organization of Behaviour (1949) (Hebb, 1949). The basic idea is that if two units j and k are active simultaneously, their interconnection must be strengthened. If j receives input from k, the simplest version of Hebbian learning prescribes to modify the weight wjk with
[image: image8.jpg]
where ϒ is a positive constant of proportionality representing the learning rate. Another common rule uses not the actual activation of unit k but the difference between the actual and desired activation for adjusting the weights: [image: image9.jpg]
in which dk is the desired activation provided by a teacher. This is often called the Widrow-Hoff rule or the delta rule, and will be discussed in the next chapter. Many variants (often very exotic ones) have been published the last few years.

Networks with threshold activation functions

A single layer feed-forward network consists of one or more output neurons o, each of which is connected with a weighting factor wio to all of the inputs i. In the simplest case the network has only two inputs and a single output, as sketched in figure:

[image: image10.jpg]
(we leave the output index o out). The input of the neuron is the weighted sum of the inputs plus the bias term. The output of the network is formed by the activation of the output neuron, which is some function of the
input:

[image: image11.jpg]
The activation function F can be linear so that we have a linear network, or nonlinear. In this section we consider the threshold (or Heaviside or sgn) function:

[image: image12.jpg]
The output of the network thus is either +1 or -1 depending on the input. The network can now be used for a classi cation task: it can decide whether an input pattern belongs to one of two classes. If the total input is positive, the pattern will be assigned to class +1, if the total input is negative, the sample will be assigned to class -1.The separation between the two
classes in this case is a straight line, given by the equation:

[image: image13.jpg]
We will describe two learning methods for these types of networks: the 'perceptron'
learning rule and the 'delta' or 'LMS' rule. Both methods are iterative procedures that adjust
the weights. A learning sample is presented to the network. For each weight the new value is
computed by adding a correction to the old value. The threshold is updated in a same way:

[image: image14.jpg]
Perceptron learning rule and convergence theorem

Suppose we have a set of learning samples consisting of an input vector x and a desired output d(x). For a classification task the d(x) is usually +1 or -1.The perceptron learning rule is very simple and can be stated as follows:

1. Start with random weights for the connections;

2. Select an input vector x from the set of training samples;

3. If y ≠d(x) (the perceptron gives an incorrect response), modify all connections wi according to: Δwi = d(x)xi;

4. Go back to 2.

Note that the procedure is very similar to the Hebb rule; the only difference is that, when the network responds correctly, no connection weights are modfied. Besides modifying the weights, we must also modify the threshold θ. This θ is considered as a connection w0 between the output neuron and a 'dummy' predicate unit which is always on: x0 = 1. Given the perceptron learning rule as stated above, this threshold is modified according to:

[image: image15.jpg]
The adaptive linear element (Adaline)(not mention in syllabus)
An important generalisation of the perceptron training algorithm was presented by Widrow and Hoff as the 'least mean square' (LMS) learning procedure, also known as the delta rule. The main functional diference with the perceptron training rule is the way the output of the system is used in the learning rule. The perceptron learning rule uses the output of the threshold function (either -1 or +1) for learning.The delta-rule uses the net output without further mapping into output values -1 or +1.The learning rule was applied to the 'adaptive linear element,' also named Adaline2, developed by Widrow and Hoff (Widrow & Hoff, 1960). In a simple physical implementation

[image: image16.jpg]

this device consists of a set of controllable resistors connected to a circuit which can sum up currents caused by the input voltage signals. Usually the central block, the summer, is also followed by a quantiser which outputs either +1 of -1,depending on the polarity of the sum.

Although the adaptive process is here exemplified in a case when there is only one output, it may be clear that a system with many parallel outputs is directly implementable by multiple units of the above kind.
If the input conductances are denoted by wi, i = 0; 1; : : : ; n, and the input and output signals by xi and y, respectively, then the output of the central block is defined to be:

[image: image17.jpg]
where θ = w0. The purpose of this device is to yield a given value y = dp at its output when the set of values xp i , i = 1,2..... , n, is applied at the inputs. The problem is to determine the coeficients wi, i = 0, 1......., n, in such a way that the input-output response is correct for a large number of arbitrarily chosen signal sets. If an exact mapping is not possible, the average error must be minimised, for instance, in the sense of least squares. An adaptive operation means that there exists a mechanism by which the wi can be adjusted, usually iteratively, to attain the correct values.

QUESTIONS SOLVED

EXAMPLE

A perceptron learns to perform a binary NAND function on inputs [image: image18.png]and [image: image19.png].

Inputs: [image: image20.png], [image: image21.png], [image: image22.png], with input [image: image23.png] held constant at 1.

Threshold: 0.5 Bias: 0 Learning rate: 0.1 Training set, consisting of four samples:{((0,0),1),((0,1),1),((1,0),1),((1,1),0)}

Training set, consisting of four samples: [image: image24]
In the following, the final weights of one iteration become the initial weights of the next. Each cycle over all the samples in the training set is demarcated with heavy lines.

	Input
	Initial weights
	Output
	Error
	Correction
	Final weights

	Sensor values
	Desired output
	
	Per sensor
	Sum
	Network
	
	
	

	x0
	x1
	x2
	z
	w0
	w1
	w2
	c0
	c1
	c2
	s
	n
	e
	d
	w0
	w1
	w2

	
	
	
	
	
	
	
	x0 * w0
	x1 * w1
	x2 * w2
	c0 +c1 +c2
	if s>t then 1, else 0
	z-n
	r * e
	
	
	

	1
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	+0.1
	0.1
	0
	0

	1
	0
	1
	1
	0.1
	0
	0
	0.1
	0
	0
	0.1
	0
	1
	+0.1
	0.2
	0
	0.1

	1
	1
	0
	1
	0.2
	0
	0.1
	0.2
	0
	0
	0.2
	0
	1
	+0.1
	0.3
	0.1
	0.1

	1
	1
	1
	0
	0.3
	0.1
	0.1
	0.3
	0.1
	0.1
	0.5
	0
	0
	0
	0.3
	0.1
	0.1

	1
	0
	0
	1
	0.3
	0.1
	0.1
	0.3
	0
	0
	0.3
	0
	1
	+0.1
	0.4
	0.1
	0.1

	1
	0
	1
	1
	0.4
	0.1
	0.1
	0.4
	0
	0.1
	0.5
	0
	1
	+0.1
	0.5
	0.1
	0.2

	1
	1
	0
	1
	0.5
	0.1
	0.2
	0.5
	0.1
	0
	0.6
	1
	0
	0
	0.5
	0.1
	0.2

	1
	1
	1
	0
	0.5
	0.1
	0.2
	0.5
	0.1
	0.2
	0.8
	1
	-1
	-0.1
	0.4
	0
	0.1

	1
	0
	0
	1
	0.4
	0
	0.1
	0.4
	0
	0
	0.4
	0
	1
	+0.1
	0.5
	0
	0.1

	1
	0
	1
	1
	0.5
	0
	0.1
	0.5
	0
	0.1
	0.6
	1
	0
	0
	0.5
	0
	0.1

	1
	1
	0
	1
	0.5
	0
	0.1
	0.5
	0
	0
	0.5
	0
	1
	+0.1
	0.6
	0.1
	0.1

	1
	1
	1
	0
	0.6
	0.1
	0.1
	0.6
	0.1
	0.1
	0.8
	1
	-1
	-0.1
	0.5
	0
	0

	1
	0
	0
	1
	0.5
	0
	0
	0.5
	0
	0
	0.5
	0
	1
	+0.1
	0.6
	0
	0

	1
	0
	1
	1
	0.6
	0
	0
	0.6
	0
	0
	0.6
	1
	0
	0
	0.6
	0
	0

	1
	1
	0
	1
	0.6
	0
	0
	0.6
	0
	0
	0.6
	1
	0
	0
	0.6
	0
	0

	1
	1
	1
	0
	0.6
	0
	0
	0.6
	0
	0
	0.6
	1
	-1
	-0.1
	0.5
	-0.1
	-0.1

	1
	0
	0
	1
	0.5
	-0.1
	-0.1
	0.5
	0
	0
	0.5
	0
	1
	+0.1
	0.6
	-0.1
	-0.1

	1
	0
	1
	1
	0.6
	-0.1
	-0.1
	0.6
	0
	-0.1
	0.5
	0
	1
	+0.1
	0.7
	-0.1
	0

	1
	1
	0
	1
	0.7
	-0.1
	0
	0.7
	-0.1
	0
	0.6
	1
	0
	0
	0.7
	-0.1
	0

	1
	1
	1
	0
	0.7
	-0.1
	0
	0.7
	-0.1
	0
	0.6
	1
	-1
	-0.1
	0.6
	-0.2
	-0.1

	1
	0
	0
	1
	0.6
	-0.2
	-0.1
	0.6
	0
	0
	0.6
	1
	0
	0
	0.6
	-0.2
	-0.1

	1
	0
	1
	1
	0.6
	-0.2
	-0.1
	0.6
	0
	-0.1
	0.5
	0
	1
	+0.1
	0.7
	-0.2
	0

	1
	1
	0
	1
	0.7
	-0.2
	0
	0.7
	-0.2
	0
	0.5
	0
	1
	+0.1
	0.8
	-0.1
	0

	1
	1
	1
	0
	0.8
	-0.1
	0
	0.8
	-0.1
	0
	0.7
	1
	-1
	-0.1
	0.7
	-0.2
	-0.1

	1
	0
	0
	1
	0.7
	-0.2
	-0.1
	0.7
	0
	0
	0.7
	1
	0
	0
	0.7
	-0.2
	-0.1

	1
	0
	1
	1
	0.7
	-0.2
	-0.1
	0.7
	0
	-0.1
	0.6
	1
	0
	0
	0.7
	-0.2
	-0.1

	1
	1
	0
	1
	0.7
	-0.2
	-0.1
	0.7
	-0.2
	0
	0.5
	0
	1
	+0.1
	0.8
	-0.1
	-0.1

	1
	1
	1
	0
	0.8
	-0.1
	-0.1
	0.8
	-0.1
	-0.1
	0.6
	1
	-1
	-0.1
	0.7
	-0.2
	-0.2

	1
	0
	0
	1
	0.7
	-0.2
	-0.2
	0.7
	0
	0
	0.7
	1
	0
	0
	0.7
	-0.2
	-0.2

	1
	0
	1
	1
	0.7
	-0.2
	-0.2
	0.7
	0
	-0.2
	0.5
	0
	1
	+0.1
	0.8
	-0.2
	-0.1

	1
	1
	0
	1
	0.8
	-0.2
	-0.1
	0.8
	-0.2
	0
	0.6
	1
	0
	0
	0.8
	-0.2
	-0.1

	1
	1
	1
	0
	0.8
	-0.2
	-0.1
	0.8
	-0.2
	-0.1
	0.5
	0
	0
	0
	0.8
	-0.2
	-0.1

	1
	0
	0
	1
	0.8
	-0.2
	-0.1
	0.8
	0
	0
	0.8
	1
	0
	0
	0.8
	-0.2
	-0.1

	1
	0
	1
	1
	0.8
	-0.2
	-0.1
	0.8
	0
	-0.1
	0.7
	1
	0
	0
	0.8
	-0.2
	-0.1

Solution of question paper 2010

Hebbian Learning Law
This rule is given by Hebb in 1949. For Hebbian learning rule the learning signal ‘r’ is equal simply to neurons output.

r = f(wiTx)

Here the change in the weight vector is given by:

Δ wi = η f(wiTx)x

Therefore, the jth component of Δ wi is given by:

Δ wij = η f(wiTx)xj
= η yi xj , j = 1,2,.m

Where yi is the output signal of the ith unit.

x is the input vector.

η is the learning rate parameter and it lies between 0 and 1 that controls the adoption rate.

This law requires weight initialization to small random values around wij = 0 prior to learning.

The Hebbian training rule represents a purely feed forward, unsupervised learning. The rule say’s that if the cross product of output and input, or the correlation term yixj is positive, these results in an increase of weights wij, otherwise the weight decreases. It can be seem that the output is strengthened in turn for each input presented. Therefore frequent input patterns will have most influence at the neuron’s weight vector and will eventually produce the large output.

[image: image25.emf]
NOTE:

F(net1) calculation: 2 . - 1
 1 + exp(- 1 * 3)
 = 2 . - 1 where exp = 2.7183
 1 + exp(- 1 * 3)
 = 0.9051

[image: image26.emf]This process is repeated until there is no change in the weight vector.
Perceptron Learning Law
This rule is given by Rosenblall in 1958. For perception learning rule, the learning signal ‘r’ is the difference between the desired and actual neuron’s response. Thus, learning is supervised and the learning signal is equal to

r = di - oi
Here the change in the weight vector is given by:

Δ wi = η [di - sgn(wiTx)]x

Where sgn(x) is Signum function of x. Therefore, we have

Δ wij = η [di - sgn(wiTx)]xj
= η (di -yi)xj , j = 1,2,.m

Where di is desired output and yi is the actual output.

This law is applicable only for bipolar output function f(.). This is also called discrete perceptron learning law. The expression for Δ wij shows that the weights are adjusted only if the actual output yi is incorrect, since the term in the square brackets is zero for the correct output. In implementation, the weights can be initialized to any random initial values

. [image: image27.emf]
[image: image28.emf]
[image: image29.emf]
The Kohonen Neural Network And The Training Procedure
The Kohonen network, also known as self-organizing MAP, a two- layer unsupervised continuous valued neural network [17,19,24]. This network is an excellent tool for ordering any kind of scattered data. The great advantage of this network is its self-organizing ability, which allows a predefined grid to keep its topology during the training procedure, when this grid moves toward the input scattered points and follows their spatial structure.

Here the number of input neurons is three, since the network will be trained by the coordinates of the 3D input points. The output neurons from a quadrilateral grid, and this topology will be preserved during the whole procedure. All the output nodes are connected to each input node and a weight is associated to every connection, which are considered as a spatial coordinates of points of the grid. It is demonstrated in Figure (9). During the training procedure weights will be changing, hence this grid will move slowly in the three dimensional space towards the input points, meanwhile the topology of the grid will remain the same.

[image: image30.emf]
Figure 9: The Application of The Kohonen Network for Surface Fitting

A short description of the training
One of the scattered input points is selected randomly to be the input vector of the net. A winning unit is determined by the minimum Euclidean distance of this point to the output nodes. The node with the minimum distance is the winning unit. Around this node a neighborhood of output points is determined according to the topology of the grid. Finally the weights of the nodes in this neighborhood are updated, i.e. change slightly toward the value of the input vector. After updating the weights in the neighborhood, a new input vector is presented and the grid will move a little towards that point etc. thus after several iteration the grid will spread out and follow the overall shape of the scattered points [11,32].
Algorithm Of Kohonen Neural Network(Training Procedure)
Let scattered points pr (x1r ,x2r ,x3r) (r = 1,.,n) be given. The coordinates of these points will form the input vectors of the net. The net itself contains two layers: the input layer consists of three nodes and the output layer consists of m nodes. The number m depends on the number of input vector, generally m = 4* n is used, where n is the number of input points. However if the number of input points is large, or the input is given by a distribution, then m can be convenient number independently of the input points. These m output nodes form a grid with arbitrary, but predefined topology, which follows the overall shape of the scattered point set. This is quadrilateral in our case because B-splines surfaces are defined on this kind of grid.

1) Fix the topology of the grid and the number of output nodes m. let the number of input nodes n = 3. let the training time t =1.

2) Initialize the weights wiwj (i = 1,2,3 ; j = 1,.,m) of the network as small random numbers around the centroid of the point set or according to additional data.

3) Present an input – three coordinates of a randomly selected spatial point Pi(x1, x2 , x3).

4) Compute the output and find winning nodes by

[image: image31.emf]
i.e. the node, which is associated to the closest point Qmin of the grid to the output point in 3D.

5) Find the neighbors of the winning node by the neighborhood function N(t) and update the weights of these nodes by.

Wij(t+1) = wij (t) + η(t) (xi – wij(t))
where η(t) is a real-valued function called gain term.

6) Let t = t + 1 and decrease η(t) and N(t).

7) Go to step (3) and start next iteration until the network is trained. The network is said to be trained if the movement of the grid (i.e. the value of the gain term) falls under a predefined limit (Normally η(t) = 0.001)

If the number of input points is relatively small, then the network is said to be trained if all the input points are on the grid, It we have hundreds of input points, to data given by a distribution, as in some of the scattered data problems, then this requirement would yield long computing time. Hence, contrary to most of the other methods, the proposed procedure can handle a distribution as well as a limited number of spatial points. The network produces a quadrilateral grid. This particular topology, however, depends only on the original connections of the output nodes. If a triangular or any other kind of grid would be desired, the nodes can be connected accordingly. Now we examine some properties of the network, which influence the efficiency of the training procedure.

[image: image32.emf]Training Algorithms for Simple AM

y_m

w_11

y_1

x_n

x_1

w_1m

w_n1

w_nm

•Goal of learning:

–to obtain a set of weights w_ij

–from a set of training pattern pairs { s:t}

–such that when sis applied to the input layer, tis computed

at the output layer

–

s_1

s_n

t_1

t_m

•Network structure: single layer

–one output layer of non-linear units and one input layer

–similar to the simple network for classification in Ch. 2

jwsftts

j

T

j

 allfor)(:: pairs trainingallfor

[image: image33.emf]•Similar to hebbian learning for classification in Ch. 2

•Algorithm: (bipolar or binary patterns)

–For each training samples s:t:

–

are ON (binary) or have the same sign (bipolar)

•

•Instead of obtaining Wby iterative updates, it can be

computed from the training set by calculating the outer

product of sand t.

jiij

tsw

}{)()(

1

ij

P

P

jiij

wWptpsw

Hebbian rule

jiij

tsw and both if increases patterns training allfor updatesafter Then, initiall. 0 If Pw

ij

[image: image34.emf]•Outer product. Let s and tbe rowvectors.

Then for a particular training pair s:t

And

•It involves 3 nested loops p, i, j (order of p is irrelevant)

p= 1 to P /* for every training pair */

i = 1 to n/* for every row in W */

j = 1 to m/* for every element j in row i */

nmn

m

mnn

m

m

m

n

T

ww

ww

tsts

tsts

tsts

tt

s

s

ptpspW

......

......

......

......

......

,......)()()(

1

111

1

212

111

1

1

P

p

T

ptpsPW

1

)()()(

)()(: ptpsww

jiijij

Discrete Hopfield Model
· A single layer network each node as both input and output units

· Major contribution of John Hopfield to NN

· Treating a network as a dynamic system

· Introduce the notion of energy function & attractors into NN research
· Architecture:
· single layer (units serve as both input and output)
· nodes are threshold units (binary or bipolar)
· [image: image41.wmf]0

=

=

ii

ji

ij

w

w

w

weights: fully connected, symmetric, and zero diagonal

[image: image42.wmf]i

x

[image: image43.png]
· are external inputs, which
may be transient or permanent

[image: image35.emf]•Weights:

–To store patterns s(p), p=1,2,…P

bipolar:

same as Hebbian rule (with zero diagonal)

binary:

converting s(p) to bipolar when constructing W.

0

)()(

ii

p

jiij

w

jipspsw

0

)1)(2)(1)(2(

ii

p

jiij

w

jipspsw

 EMBED PowerPoint.Slide.8 [image: image36.emf]•Recall

–Use an input vector to recall a stored vector (book calls the

application of DHM)

–Each time, randomly select a unit for update

Recall Procedure

1.Apply recall input vector to the network:

2.While convergence = fails do

2.1.Randomly select a unit

2.2. Compute

2.3. Determine activation of Yi

2.4. Periodically test for convergence.

x

nixy

ii

,....2,1:

ij

jijii

wyxiny_

ii

iii

ii

i

inyif

inyify

inyif

y

_1

_

_1

[image: image37.emf]•Notes:

1.Each unit should have equal probability to be selected

at step 2.1

2.Theoretically, to guarantee convergence of the recall

process, only one unit is allowed to update its

activation at a time during the computation. However,

the system may converge faster if all units are allowed

to update their activations at the same time.

3.Convergence test:

4.usually set to zero.

5.in step 2.2 () is optional.

inextycurrenty

ii

)()(

i

i

x

j

jijij

wyxiny_

 EMBED PowerPoint.Slide.8 [image: image38.emf]•Example:

Store one pattern:

Recall input

) same thegives

1)- 1 1 (1t counterpar(bipolar

)0,1,1,1(patternbinary

W

 wrongare bits first two),0,1,0,0(x

)0,1,0,1(

1

110_

1

1

111

Y

y

wyxiny

j

selected is

1

Y

0111

1011

1101

1110

W

selected is

4

Y

)0,1,0,1(

2

2)2(0 _

4

4

444

Y

y

wyxiny

j

)0,1,0,1(

1

211_

3

3

333

Y

y

wyxiny

j

selected is

3

Yselected is

2

Y

)0,1,1,1(

1

220_

2

2

222

Y

y

wyxiny

j

The stored pattern is correctly recalled

U

Downloaded notes

References

1- Fundamantals of Neural Networks: Architecture, Algorithms, and application. By Laurene Fausett

2- Neural Networks. By Phil Picton

3- Neural Networks. Fundamentals, Application, Examples. By Werner Kinnebrock

4- Neural network for identification, prediction and control. By D. T. Pham and X. Liu.

U1.1 Introduction

Artificial neural network (ANN) models have been studied for many years with the hope of achieving "Human-like performance", Different names were given to these models such as:

- Parallel distributed processing models

- Biological computers or Electronic Brains.

- Connectionist models

- Neural morphic system

After that, all these names settled on Artificial Neural Networks (ANN) and after it on neural networks (NN) only.

There are two basic different between computer and neural, these are:

1- These models are composed of many non-linear computational elements operating in parallel and arranged in patterns reminiscent of biological neural networks.

2- Computational Elements (or node s) are connected via weights that are typically adapted during use to improve performance just like human brain.
Computer logic Elements (1, 0)

Neural weighted performance

U1.2 Development of Neural Networks

An early attempt to understand biological computations was stimulated by McCulloch 4 pitts in [1943], who modeled biological neurons as logical as logical decision elements these elements were described by a two – valued state variables (on, off) and organized into logical decision networks that could compute simple Boolean functions.

In 1961 Rosenblatt salved simple pattern recognition problems using perceptrons. Minskey and paert in [1969] studied that capabilities and limitations of perceptrons and concluded that many interesting problems could never be soled by perceptron networks.

Recent work by Hopfield examined the computational power of a model system of two –state neurons operating with organized symmetric connections and feed back connectivity. The inclusion of feed –back connectivity in these networks distinguished them from perceptron – line networks. Moreover, graded – response neurons were used to demonstrate the power * speed of these Networks. Recent interest in neural networks is due to the interest in building parallel computers and most importantly due the discovery of powerful network learning algorithms.

U1.3 Areas of Neural Networks

The areas in which neural networks are currently being applied are:

1-Signal processing

2- Pattern Recognition.

3- Control problems

4- Medicine

5- Speech production
6- Business

[image: image39.emf]
[image: image40.emf]

Neclues is a simple processing unite which receives and combines

signals from many other neurons through input paths called Udendrites Uif the combined signal is strong enough, it activates the firing of neuron which produces an o/p signal. The path of the o/p signal is called the axon, UsynapseU is the junction between the (axon) of the neuron and the dendrites of the other neurons. The transmission across this junction is chemical in nature and the amount of signal transferred depends on the synaptic strength of the junction. This synoptic strength is modified when the brain is learning.

Weights (ANN) ≡ synaptic strength (biological Networks)

U2.2 Artificial Neural Networks (ANN)

An artificial neural network is an information processing system that has certain performance characters in common with biological neural networks. Artificial neural networks have been developed as generalizations of mathematical models of human cognition or neural biology, based on the assumptions that:-

1-Information processing occurs at many simple elements called neurons.

2-Signals are passed between neurons over connection links.

3-Each connection link has an associated weight which, in a typical neural net, multiplies the signal transmitted.

4-Each neuron applies an action function (usually nonlinear) to its net input (sum of weighted input signals) to determine its output signal.

A neural network is characterized by:

1- Architecture: - its pattern of connections between the neurons.

2- Training Learning Algorithm: - its method of determining the weights on the connections.

3- Activation function.

U2.2.1 Properties of ANN

1-Parallelism

2-Capacity for adaptation "learning rather programming"

3-Capacity of generalization

4-No problem definition

5- Abstraction & solving problem with noisy data.

6- Ease of constriction & learning.

7-Distributed memory

8- Fault tolerance

٧
U2-3 type of learning

In case a neural network is to be used for particle applications, a general procedure is to be taken, which in its various steps can be described as follows:-

1: A logical function to be represented is given. The input vector eR1R , eR2R, eR3R, …. , eRnR are present, whom the output vectors aR1R, aR2R, aR3R, …. , aRnR assigned. These functions are to be represented by a network.

2: A topology is to be selected for the network.

3: The weights wR1R, wR2R, wR3R, … are to be selected in such away that the network represents The given function (n) the selected topology. Learn procedures are to be used for determining the weights.

4: After the weights have been learned and the network becomes available, it can be used as after as desired.

The learning of weights is generally done as follows:

1- Set random numbers. For all weights.

2- Select a random input vector ej.

3- Calculate the output vector Oj with the current weights.

4- Compare Oj with the destination vector aj , if Cj = aj then continue with (2).

Else correct the weights according to a suitable correction formula and then continue with (2).

There are three type of learning in which the weights organize themselves according to the task to be learnt, these types are:-

U1- Supervised learning:-

The supervised is that, at every step the system is informed about the exact output vector. The weights are changed according to a formula (e.g. the delta-rule), if o/p is unequal to a. This method can be compared to learning under a teacher, who knows the contents to be learned and regulates them accordingly in the learning procedure.

Dr. E.C. Kulasekere () Neural Networks 1 / 36
� EMBED Equation.3 ���

� EMBED Equation.3 ���

� EMBED MSPhotoEd.3 ���

VII Sem electrical Ms. Payal Kanwar

[image: image44.wmf]0

=

=

ii

ji

ij

w

w

w

[image: image45.wmf]i

x

[image: image46.png]_1381309890.unknown

_1381310022.bin

_1381309795.unknown

