INTRODUCTION

Chapter 1

Introduction
1.1 Problem

The objective of this project is to draw nodes in the specified network.we can add nodes,delete nodes,change the weight of the node ,remove the node
By changing the weight of the node to zero. We can also find the best path for the designed network.
1.2 Software tools

Front-end tool: JAVA 1.4
Java is an object-oriented programming language developed sun Microsystems and it is also a powerful internet programming language. Java is a high-level programming language which has the following features

· Object oriented

· Portable

· Architecture-neutral

· High-performance

· Multithreaded

· Robust

· Secure
Java is an efficient application programming language. It has APIs to support the GUI based application development. The following feature of java makes it more suitable for implementing this project.

Platform Independent
Platform independence-that is, the ability of a program to move easily from one computer system to another-is one of the most significant advantages that Java has over other programming languages. Java is platform independent at both the source and the binary level.

Powerful database connectivity

Java has powerful database connectivity. The effective back end connectivity support will results in quick retrieval and storage of large volume of data .It also supports concurrency control mechanisms and thus it can improve the data consistency.

Back-end tool: MS-ACCESS
· It minimizes data contention and guarantees data concurrency.

· Access maintains the preceding features with a high degree of overall system performance.

· Database users do not suffer from slow processing performance.

· Access also offers the heterogeneous option that allows users to access data on some non oracle database transparently.

PROBLEM STATEMENT

Chapter 2

Problem Statement
The objective of this project is to draw nodes in the specified network.we can add nodes, delete nodes, change the weight of the node, and remove the node.

By changing the weight of the node to zero. We want to find the best path for the designed network.
.

METHODOLOGY

Chapter 3

 Methodology
Abstract:

 The vision of the mobile ad-hoc networking is to support robust and efficient operation in mobile wireless networks by incorporating routing functionality into mobile nodes. With this increasing popularity and deployment, the demands on the wireless network are going to increase in future.

 The long-term goal of this research is to improve the speed of wireless networks so that it can meet the ever so rising demands of bandwidth. The primary goals are to provide a framework for performing the necessary experiments in a platform independent environment. For that, the designing and implementation of a basic Simulation of Routers with QoS in Java.

Existing System:

 In the existing simulation packages the design is based on building a model of a network of routers and then generates traffic for each node. If the number of nodes increases we have to simulate a very large number of routers and the complexity of the simulation increases as the square of that number.

 So we need a system which has to provide a new approach to simulate these routers of ad-hoc Networks.

Proposed System:

 The emergence of roaming applications has recently generated much interest in wireless network infrastructures that support real-time communications. In this project, we propose a bandwidth routing protocol for quality-of-service (QoS) support in a mobile network. The QoS routing feature is important for a mobile network to interconnect wired networks with QoS support (e.g., ATM, Internet, etc.). The QoS routing protocol can also work in a stand-alone multihop mobile network for real-time applications. Our QoS routing protocol contains end-to-end bandwidth calculation and bandwidth allocation. Under such a routing protocol, the source (or the ATM gateway) is informed of the bandwidth and QoS available to any destination in the mobile network. This knowledge enables the establishment of QoS connections within the mobile network

and the efficient support of real-time applications.

 In addition, it enables more efficient call admission control. In the case of Router interconnection, the bandwidth information can be used to carry out intelligent handoff between router gateways and/or to extend the router virtual circuit service to the mobile network with possible renegotiation of QoS parameters at the gateway. We examine the system performance in various QoS traffic flows and mobility environments via simulation.

 Simulation results suggest distinct performance advantages of our protocol that calculates the bandwidth information. It is particularly useful in call admission control. Furthermore, “standby” routing enhances the performance in the mobile environment. Simulation experiments show this improvement.

Module Information:

 Module-1

 Simulation of Routers.

 Module-2

 Implementing the QoS.

Module Description:

 Module 1:

A. Bandwidth Reservation:

 Multimedia applications such as digital audio and video have much more stringent QoS requirements than traditional datagram applications. For a network to deliver QoS guarantees, it must reserve and control resources. A major challenge in multihop, multimedia networks is the ability to account for resources so that bandwidth reservations (in a deterministic or statistical sense) can be placed on them. We note that in cellular (single hop) networks, such accountability is made easily by the fact that all stations learn of each other’s requirements, either directly or through a control station (e.g., the base station in cellular systems).

 However, this solution cannot be extended to the multihop environment. To support QoS for real-time applications, we need to know not only the minimal delay path to the destination, but also the available bandwidth on it. A VC should be accepted only if there is enough available bandwidth. Otherwise, it would disrupt the existing VC’s.

 We only consider “bandwidth” as the QoS (thus omitting signal-to-interference ratio (SIR), packet loss rate, etc.). This is because bandwidth guarantee is one of the most critical requirements for real-time applications. “Bandwidth” in timeslotted network systems is measured in terms of the amount of “free” slots. The goal of the QoS routing algorithm is to find a shortest path such that the available bandwidth on the path is above the minimal requirement.

 To compute the “bandwidth”-constrained shortest path, we not only have to know the available bandwidth on each link along the path, but we also have to determine the scheduling of free slots. Though some algorithms were proposed to solve this QoS routing problem, they unfortunately may only work in some special environments.

B. Bandwidth Calculation

 The transmission time scale is organized in frames, each containing a fixed number of time slots. The entire network is synchronized on a frame and slot basis. The frame/slot synchronization mechanism is not described here, but can be implemented with techniques similar to those employed in the wired networks (e.g., “follow the slowest clock” and properly modified to operate in a wireless mobile environment. Propagation delays will cause imprecision in slot synchronization. However, slot guard times (fractions of a microsecond) will amply absorb propagation delay effects (in the order of microseconds).

 Each frame is divided into two phases, namely, the control phase and the data phase. The size of each slot in the control phase is much smaller than the one in the data phase. The control phase is used to perform all the control functions, such as slot and frame synchronization, power measurement, code assignment, VC setup, slots request, routing table. The amount of data slots/frame assigned to a VC is determined according to a QoS requirement.

 The control phase uses pure TDMA with full power transmission in a common code. That is, each node takes turns to broadcast its information to all of its neighbors in a predefined slot, such that the network control functions can be performed distributive. We assume the information can be heard by all of its adjacent nodes. In a noisy environment, where the information may not always be heard perfectly at the adjacent nodes, an acknowledgment scheme is performed in which each node has to ACK for the last information in its control slot. By exploiting this approach, there may b e one frame delay for the data transmission after issuing the data slot reservation. Ideally, at the end of the control phase, each node has learned the channel reservation status of the data phase. This information will help one to schedule free slots, verify the failure of reserved slots, and drop expired real-time packets between and is {1, 3}.

SYSTEM REQUIREMENTS

Chapter 5

Hardware & Software Requirements

Hardware specification:

S/W Description:

 OPERATING SYSTEM: Linux

 PROGRAMMING

 LANGUAGE : Java

Software specification:
 Technology : Java API for Wireless Application Protocol which implements the 802.11 WLAN MAC protocol.

SYSTEM ANALYSIS & DESIGN

Chapter 6

System Analysis & Design

6.1 Data Collection:

The data collection comprises

· The error codes to be processed.

· Details regarding the bug maintenance.

· Information about the team involved in a particular project.

· Filter designs- particulars about the access permissions and denials.

6.2 Data Flow Diagram or ER Diagram:

Administrator
Programmer

Fig 6.2.1

Tool user
Fig 6.2.2

 Fig 6.2.2

6.3 Feasibility Study:

Feasibility Study may be defined as the maximum extent to which the requirements, design or plans for a system can be implemented under existing constraints.The feasibility study may be considered as the degree of usefulness of the product to the organization.

Technical feasibility:

· This project is being implemented in JAVA 1.4 which is platform independent.

· JFC components provide high end sophisticated functionalities to support effective user interaction.

· Swing is being used for designing purpose.

· The back end structure is created using MS-ACCESS.

Operational feasibility:
· Since JAVA is platform independent the project could virtually run on any kind of architecture.

· User interaction is made easier and provisions are available for updating information.

Economical feasibility:

· This project is feasible economically due to its minimal software requirements.

6.4 Input/Output & Form Design
[image: image1.png]) Applet Viewer: BellmanFord.class
Applet

DOGUMENTATION: |POCUMENTATION, 2]
[You can seroll through the documentation or get documentation

[offems =] [21@ specif fem by selecting the fern on the et

Selecting <Allitems brings you back 1o the scrolling text

Bampiez])
dlear
n

Tabe s v . s . ' y
a E [ios [iwe [fine &
b for | fine [[ioe [Na |NA
. [ioa [F fine [og [[Na
' fine i F [og [[Na
. fine [ee [we [oe [&
0 S - - T
' o e T

Applet started

[image: image2.png]) Applet Viewer: BellmanFord.class (M=)
Applet

(]

DOCUMENTATION: | AIB0rthm running: red arows point o nades reachable (mmeidate neighbol A
Jwitin 1 hop from the inspected node (lue nod).

[aems =] [The tistance fom the sart nose fo: =10, =10. Node b has the minimurn o

|any other path 1o b visits another red node, and will be longer than 10

INode b wil be colored arande to indicate 10 i the length of the shortest path ¥

Examplez. ERp o grestee)
clear

run

next

Tabe s v . s . ' y
. O . it A A
b [or | fine [[ioe [Na |NA
. [ioa [F fine [og [[Na
' fine i F [og [[Na
. fine [ee [we [oe [&
0 S - - T
' o e T

Applet started

[image: image3.png]Applet Viewer: BellmanFord.class

8= ¥

Applet

DOCUMENTATION;

all tems =
Example?. =

Step 2 Red antows point to neighbour nodes that reachable from 2
neighbour ofinspected node that already have a final distance.

[The distance to: c=10, d=40, e=20. Node ¢ has the minimum distance. =
|any other path 1o ¢ visits another red node, and will be langer than 10.
Nn]decwm be colored orande o indicate 10 is the lenth ofthe. shnr\e‘sm?thl["
< m >

run

next

reset

b oA | [me [0 [mE [NR |wA
N Tana anE I Tin ane s s

6.6 Source Code:

import java.applet.Applet;

import java.awt.*;

/*

<applet code =BellmanFord.class width=600 height=700>

</applet> */

public class BellmanFord extends Applet

{

 public BellmanFord()

 {

 graphcanvas = new GraphCanvas(this);

 options = new Options(this);

 documentation = new Documentation(this);

 routeTable = new RouteTable();

 }

 public void init()

 {

 setLayout(new BorderLayout(10, 10));

 add("Center", graphcanvas);

 add("North", documentation);

 add("East", options);

 add("South", routeTable);

 }

 public Insets insets()

 {

 return new Insets(10, 10, 10, 10);

 }

 public void lock()

 {

 graphcanvas.lock();

 options.lock();

 }

 public void unlock()

 {

 graphcanvas.unlock();

 options.unlock();

 }

 GraphCanvas graphcanvas;

 Options options;

 Documentation documentation;

 RouteTable routeTable;

}
import java.awt.*;

class DocOptions extends Panel

{

 DocOptions(Documentation documentation, BellmanFord bellmanford)

 {

 doc = new Choice();

 doc2 = new Choice();

 setLayout(new GridLayout(3, 1, 5, 0));

 grandparent = bellmanford;

 parent = documentation;

 add(new Label("DOCUMENTATION:"));

 doc.addItem("draw nodes");

 doc.addItem("remove nodes");

 doc.addItem("move nodes");

 doc.addItem("the startnode");

 doc.addItem("draw arrows");

 doc.addItem("change weights");

 doc.addItem("remove arrows");

 doc.addItem("clear / reset");

 doc.addItem("run algorithm");

 doc.addItem("step through");

 doc.addItem("example");

 doc.addItem("exit");

 doc.addItem("all items");

 add(doc);

 doc2.addItem("Choose Example: ");

 doc2.addItem("Example1:");

 doc2.addItem("Example2:");

 doc2.addItem("Example3:");

 add(doc2);

 }

 public boolean action(Event event, Object obj)

 {

 if(event.target instanceof Choice)

 {

 String s = new String(doc.getSelectedItem());

 parent.doctext.showline(s);

 }

 if(event.target instanceof Choice)

 {

 String s1 = new String(doc2.getSelectedItem());

 if(s1.equals("Example1:"))

 grandparent.graphcanvas.showexample1();

 else

 if(s1.equals("Example2:"))

 grandparent.graphcanvas.showexample2();

 else

 if(s1.equals("Example3:"))

 grandparent.graphcanvas.showexample3();

 }

 return true;

 }

 Choice doc;

 Choice doc2;

 Documentation parent;

 BellmanFord grandparent;

}
import java.awt.TextArea;

import java.awt.TextComponent;

class DocText extends TextArea

{

 DocText()

 {

 super(5, 2);

 doc = info + drawnodes + rmvnodes + mvnodes + startnode + drawarrows + weight + rmvarrows + clrreset + runalg + step + example + exitbutton;

 setText(doc);

 }

 public void showline(String s)

 {

 if(s.equals("draw nodes"))

 setText(drawnodes);

 else

 if(s.equals("remove nodes"))

 setText(rmvnodes);

 else

 if(s.equals("move nodes"))

 setText(mvnodes);

 else

 if(s.equals("the startnode"))

 setText(startnode);

 else

 if(s.equals("draw arrows"))

 setText(drawarrows);

 else

 if(s.equals("change weights"))

 setText(weight);

 else

 if(s.equals("remove arrows"))

 setText(rmvarrows);

 else

 if(s.equals("clear / reset"))

 setText(clrreset);

 else

 if(s.equals("run algorithm"))

 setText(runalg);

 else

 if(s.equals("step through"))

 setText(step);

 else

 if(s.equals("example"))

 setText(example);

 else

 if(s.equals("exit"))

 setText(exitbutton);

 else

 if(s.equals("all items"))

 setText(doc);

 else

 if(s.equals("toclose"))

 setText(toclose);

 else

 if(s.equals("done"))

 setText(done);

 else

 if(s.equals("locked"))

 setText(locked);

 else

 if(s.equals("maxnodes"))

 setText(maxnodes);

 else

 if(s.equals("none"))

 setText(none);

 else

 if(s.equals("some"))

 setText(some);

 else

 setText(s);

 }

 final String drawnodes = new String("DRAWING NODES:\nDraw a node by clicking the mouse.\n\n");

 final String rmvnodes = new String("REMOVE NODES:\nTo remove a node press <ctrl> and click on the node.\nYou can not remove the startnode.\nSelect another startnode, then you can remove the node.\n\n");

 final String mvnodes = new String("MOVING NODES\nTo move a node press <Shift>, click on the node,\nand drag it to its new position.\n\n");

 final String startnode = new String("STARTNODE:\nThe startnode is blue, other nodes are grey.\nThe first node you draw on the screen will be the startnode.\nTo select another startnode press <ctrl>, click on the startnode,\nand drag the mouse to another node.\nTo delete the startnode, first select another startnode, and then\nremove the node the usual way.\n\n");

 final String drawarrows = new String("DRAWING ARROWS:\nTo draw an arrow click mouse in a node,and drag it to another node.\n\n");

 final String weight = new String("CHANGING WEIGHTS:\nTo change the weight of an arrow, click on the arrowhead and drag\nit along the arrow.\n\n");

 final String rmvarrows = new String("REMOVE ARROWS:\nTo remove an arrow, change its weight to 0.\n\n");

 final String clrreset = new String("<CLEAR> BUTTON: Remove the current graph from the screen.\n<RESET> BUTTON: Remove the results of the algorithm from the graph,\n and unlock screen.\n\n");

 final String runalg = new String("<RUN> BUTTON: Run the algorithm on the graph, there will be a time\ndelay of +/- 1 second between steps.\nTo run the algorithm slower, use <STEP>.\n");

 final String step = new String("<STEP> BUTTON: An opportunity to step through the algorithm.\n");

 final String example = new String("<EXAMPLE> BUTTON: Displays a graph on the screen for you.\nYou can then use <STEP> or <RUN>\n");

 final String exitbutton = new String("<EXIT> BUTTON: Only works if applet is run with appletviewer.\n");

 final String toclose = new String("ERROR: This position is to close to another node/arrow.\n");

 final String done = new String("Algorithm has finished, follow orange arrows from startnode to any node to get\nthe shortest path to the node. The length of the path is written in the node.\npress <RESET> to reset the graph, and unlock the screen.");

 final String some = new String("Algorithm has finished, follow orange arrows from startnode to any node to get\nthe shortest path to the node. The length of the path is written in the node.\nThere are no paths from the startnode to any gray node.\npress <RESET> to reset the graph, and unlock the screen.");

 final String none = new String("Algorithm has finished, there are no nodes reachable from the start node.\npress <RESET> to reset the graph, and unlock the screen.");

 final String maxnodes = new String("ERROR: Maximum number of nodes reached!\n\n");

 final String info = new String("DOCUMENTATION:\nYou can scroll through the documentation or get documentation\non a specific item by selecting the item on the left.\nSelecting <All items> brings you back to the scrolling text.\n\n");

 final String locked = new String("ERROR: Keyboard/mouse locked for this action.\nEither press <NEXT STEP> or <RESET>.\n");

 final String doc;

}
import java.awt.*;

class Documentation extends Panel

{

 Documentation(BellmanFord bellmanford)

 {

 doctext = new DocText();

 grandparent = bellmanford;

 docopt = new DocOptions(this, grandparent);

 setLayout(new BorderLayout(10, 10));

 add("West", docopt);

 add("Center", doctext);

 }

 BellmanFord grandparent;

 DocOptions docopt;

 DocText doctext;

}
import java.awt.*;

class RouteTable extends Panel

{

 RouteTable()

 {

 tab = new TextField[7][7];

 setLayout(new GridLayout(8, 8, 3, 0));

 add(topic = new Label("Table:"));

 for(int i = 0; i < 7; i++)

 {

 alpha = "" + (char)(97 + i);

 add(new Label(alpha));

 }

 for(int j = 0; j < 7; j++)

 {

 alpha = "" + (char)(97 + j);

 add(new Label(alpha));

 for(int k = 0; k < 7; k++)

 {

 add(tab[j][k] = new TextField("N/A"));

 tab[j][k].setEditable(false);

 }

 }

 }

 public void setTable(int i, int j, int k, int l)

 {

 String s = "";

 if(i != j && k != 0)

 s = "" + k + "," + FindHop(l);

 else

 if(i != j && k == 0)

 s = "inf";

 else

 if(i == j)

 s = "-";

 tab[i][j].setText(s);

 }

 public void setColor(int i, int j, Color color)

 {

 tab[i][j].setBackground(color);

 }

 public void resetColor(int i, int j)

 {

 tab[i][j].setBackground(Color.lightGray);

 }

 public void resetAllColor()

 {

 for(int i = 0; i < 7; i++)

 {

 for(int j = 0; j < 7; j++)

 tab[i][j].setBackground(Color.lightGray);

 }

 }

 public void setDefault()

 {

 for(int i = 0; i < 7; i++)

 {

 for(int j = 0; j < 7; j++)

 tab[i][j].setText("N/A");

 }

 }

 public String FindHop(int i)

 {

 String s = "";

 switch(i)

 {

 case 0: // '\0'

 s = "A";

 break;

 case 1: // '\001'

 s = "B";

 break;

 case 2: // '\002'

 s = "C";

 break;

 case 3: // '\003'

 s = "D";

 break;

 case 4: // '\004'

 s = "E";

 break;

 case 5: // '\005'

 s = "F";

 break;

 case 6: // '\006'

 s = "G";

 break;

 default:

 s = null;

 break;

 }

 return s;

 }

 Label topic;

 TextField tab[][];

 String alpha;

}

RESULT

Chapter 7

Result
[image: image4.png]) Applet Viewer: BellmanFord.class
Applet

DOGUMENTATION: |POCUMENTATION, 2]
[You can seroll through the documentation or get documentation

[offems =] [21@ specif fem by selecting the fern on the et

Selecting <Allitems brings you back 1o the scrolling text

Bampiez])
dlear
n

Tabe s v . s . ' y
a E [ios [iwe [fine &
b for | fine [[ioe [Na |NA
. [ioa [F fine [og [[Na
' fine i F [og [[Na
. fine [ee [we [oe [&
0 S - - T
' o e T

Applet started

[image: image5.png]) Applet Viewer: BellmanFord.class (M=)
Applet

(]

DOCUMENTATION: | AIB0rthm running: red arows point o nades reachable (mmeidate neighbol A
Jwitin 1 hop from the inspected node (lue nod).

[aems =] [The tistance fom the sart nose fo: =10, =10. Node b has the minimurn o

|any other path 1o b visits another red node, and will be longer than 10

INode b wil be colored arande to indicate 10 i the length of the shortest path ¥

Examplez. ERp o grestee)
clear

run

next

Tabe s v . s . ' y
. O . it A A
b [or | fine [[ioe [Na |NA
. [ioa [F fine [og [[Na
' fine i F [og [[Na
. fine [ee [we [oe [&
0 S - - T
' o e T

Applet started

[image: image6.png]Applet Viewer: BellmanFord.class

8= ¥

Applet

DOCUMENTATION;

all tems =
Example?. =

Step 2 Red antows point to neighbour nodes that reachable from 2
neighbour ofinspected node that already have a final distance.

[The distance to: c=10, d=40, e=20. Node ¢ has the minimum distance. =
|any other path 1o ¢ visits another red node, and will be langer than 10.
Nn]decwm be colored orande o indicate 10 is the lenth ofthe. shnr\e‘sm?thl["
< m >

run

next

reset

b oA | [me [0 [mE [NR |wA
N Tana anE I Tin ane s s

[image: image7.png]) Applet Viewer: BellmanFord.class (M=)
Applet

=

DOCUMENTATION: |tep 4 Red anows point to neighbour nodes that reachable from 2
neighbour ofinspected node that already have 3 final distance.

[atems =] [The distance o:8=30.Notice tat e distance 0., has changed!

[There are no other arrows coming inta o

INode d wil be colored arange o indicate 30 i the lencth of the shortest path ¥

Examplez. ERp di ey
clear

run

next

Tabe s v . s . ' s
8 [e [0 vk [NR
b [or | [me [me [loE A WA
. [ioa [mE | e [ioe A |NA
' e [me [mE [o

[image: image8.png]Applet Viewer: BellmanFord.class (M=)

=

Applet

DOCUMENTATION;

ems =] [Press “RESET to resetthe araph, and nlockthe sireen
Examplez. < fe _ il

Table:

7
o

[Algorithm has finished, follow orangs artows from startnods to any node to gt
fthe shortest path to the node. The length of the path is written in the node.

clear

run

next

reset

0

s . ' y
l— - - [E " [me A A
[ia | R L R
[a [me [[ime [mw [uw
[me [me [me | [fnw [uw
Tan ~ Mna IS Tanm e Trara Trara

[image: image9.png]Applet Viewer: BellmanFord.class [B=%]

Applet

DOGUMENTATION: | <CLEAR> BUTTON: Remove the current graph from the screen.
<RESET> BUTTON: Remove the results of the algorithm from the graph,

(S] | oo uniock ereen

Example =
clear
run
step
reset

e a 5 . s . 0)
. 5 [ie [ie [[ie [irfm
v ik F N e A A U
. e [ieF for e [
s for G

N s F s F s F s I F s F s

[image: image10.png]Applet Viewer: BellmanFord.class

Aot
pocNENTATION. | [CRAGING WETGHTS =
o Ghange e weigt o an arow,click o e arowead and e
el {
!)
oar
s
rese

e a 5 . s . 0)
. 5 [ie [ie [[ie [irfm
v ik F N e A A U
. e [ieF for e [
s for G
- 1 a Tinf Tinf Tinf e Tinf Tinf

[image: image11.png]Applet

DOCUMENTATION: [REMOVE NODES:
[Ta remave anode press <t and click an the node.

[Femave nades =] [{0U can notermove tne stainoge
remeve nodes Select another startnode, then you can remove the noe.

Example |

Table:

Applet started

run

step

reset

[image: image12.png]pplet Viewer: BellmanFord.class

Applet

DOCUMENTATION: [MOVING NODES

[rove modes] [orag 1o s new posiion
Example =

ITa move a node press <Shifts, elick on the node,

GEmE

clear

run

step

reset

Applet started

e a 5 . s . 0)
. 5 [ie [ie [[ie [irfm
v ik F N e A A U
. e [ieF for e [
s for G
. N A A A e fir
0 S e A R [16
' N N e - R (- (R

[image: image13.png]pplet Viewer: BellmanFord.class

Applet

DOGUMENTATION: |CHANGING WEIGHTS,
ITo change the weight of an artow, lick on the anowhead and drag

hange weigns <] [talong the artow.
Example =

GEmE

clear

run

step

reset

Applet started

e a 5 . s . 0)
. [[ie [ie [[ie [irfm
v ik F N e A A U
. e [ieF for e [
s for G
. N A A A e fir
0 S e A R [16
' N N e - R (- (R

[image: image14.png]Applet Viewer: BellmanFord.class

=Jal

=

Applet

DOCUMENTATION;

run algorithm

Example3

Applet started

Step 2 Red antows point to neighbour nodes that reachable from
neighbour ofinspected node that already have 3 final distance.
[The distance to: d=30,

0,=90. Nods d has the minimum distance.

|any other path ta visits anciher red node, and will be langer han 30
INode o wil be colored arange to indicate 30 i the length of the shortest path]

0

0

B}

clear

run

step

reset

a 3 c a e 0 g

F i A
i F inf inf 20E i WA
ED i F 30E T0E GoF WA
ED i 30E F 20E i WA
0,0 208 0,0 200 F i WA
0,0 i 60,0 i i F WA
A A A A A A A

[image: image15.png]Applet Viewer: BellmanFord.class

=Jal

=

Applet

DOCUMENTATION;

run algorithm

Example3

Applet started

[Algorithm has finished, follow orangs artows from startnods to any node to gt
fthe shortest path to the node. The length of the path is written in the node.

press <RESET> to reset the graph, and unlock the screen.

< m | &
clear
n
0 step
@
resat
a b c 4 e 0 g
5 N
wE |- 30E 10E E a0E A
oA mE | 30E T0E G0F A
oA o [wE |- E 200 A
we e e |mo |- e A
@c |wc |mc |mc [we | A
N N N N N N N

CONCLUSION & FUTURE ENHANCEMENT

Chapter 8

Conclusion and Future Enhancement
8.1 Conclusion

 This proposed system enables to add, remove node by changing the weight ie, by moving the cursor. We can add new node by double clicking, all the process can be achieved by following the process mention in the text area.
8.2 Future Enhancement

Different kind of statistical data can be fetched from the database and the results can be presented in the form of reports. Request for password changes can be automated so that the indication need not be done manually for the given point of time.
BIBLIOGRAPHY

Chapter 9

Bibliography
9.1 Books

· Hert Schildt, Herbert Schildt, “JAVA 2: The Complete Reference “, TMH, California, 1999.

· Dr. Sathyaraj Pantham, “Pure JFC Swing”, Sams Tech Media Publications, Delhi, 1999.

9.2 Websites

· www.javaalmanac.com
· www.javaworld.com
Adding nodes

Removing nodes

Removing link

Choosing network

Change of weights

run by step

Clear if need

PAGE
1

