What is UML?

UML is the Unified Modeling Language

Unifies the OO modeling techniques of Grady Booch, Jim Rumbaugh and Ivar Jacobson (the three amigos)

UML is a current standard by the OMG (Object Management Group)

Current UML revision is UML v 1.5 (2003)

It is a way to express an OO design, easily communicative to others, regardless of the language

UML can express systems other than computer systems

UML is not a process or method: it is a modeling language

OO Analysis & Design has a static view and a dynamic view

A static view is one in which we view the structure of the system

A dynamic view is one in which we see how the system object collaborate to solve the problem

UML offers modeling for both, static and dynamic views

Elements of the UML

Use Cases

Class Diagrams

Interaction diagrams (Collaboration and Sequence Diagrams)

Packages

State Diagrams

Activity Diagrams

Use Cases

A use case is a set of scenarios, which describe all relevant interactions of a user with the system for the purpose of achieving a user’s goal.

A scenario is one particular sequence of events (a single thread) of a use case.

An actor is a role that a user plays in interacting with the system. One user can play different roles in different use cases. Actors also may be non-human elements, such as other systems interacting with our own.

· All car buyers are one actor to a Car Dealer Buy-Car use case

· All web users are one actor for a Get-Stock-Quote use case

Use Cases can be either written (text) or drawn (diagram)

Ex:

add a course (text)

1. student looks for acceptable course and fills the add form

2. student goes to the registrar

3. registrar verifies the date is ok, and instructor signature

4. student pays the course add fee by credit

5. registrar enters student in the enrollment database

6. student receives the receipt and class confirmation

alternative #1 - At step 4, student credit card is not accepted, and a second attempt on the card proceeds

alternative #2 - At step 4, an honor student has the add fee waived

Use Cases (a set of use cases for a Chat Application)

Use Cases

A use case can be extended in a controlled manner, if a base case defines explicit extension points. A use case extension can extend on one or more of these points.

A use case can be related to another use case in three ways:

1. include - allows factoring common elements to two or more use cases
2. generalization - describes variation in normal behavior
3. extend - similar to generalization but the variation is more formal as it is tied to the extension points
Class Diagrams

Class diagrams give a static view of the structure of the system. These popular models can be used at various levels of abstraction:

1. Conceptual - this level allows the diagrams to be used as a representation of the domain under study. Classes developed here will relate to the future software, but not in a direct way. In other words, we do not focus on software to be developed

2. Specification - this level is focusing on the interfaces of the design, not implementation. As a key feature of OO is clear separation of the two. If an interface is a type, then a class can implement many types and a type can have many classes

3. Implementation - at this level we detail our specification level to move closer to language implementation

The ChatServer class showing attributes and operations.

Conceptual

Specification

Implementation

Generalization-specialization is a form of inheritance. This inheritance is often referred to as isa inheritance. For example, we could say that ServerListener is a kind of a Thread.

Aggregation and Composition show an object of class A is part of another object of class B. Aggregation is more loose while composition is tightly connected.

aggregation - Shows a clear association between classes. For, example, A course at a university may be related to a major through aggregation. It is conceptual in that it shows an existent relationship. It is an informal way We think of the part as being a part of the while.

composition - This association is a stronger than aggregation. It shows that the whole owns its parts. Copying or removing the whole takes the composed part along. We also think of the part as being a part of the while, but more tightly coupled. The multiplicity on the whole end is 1 or 0..1.

Aggregation and Composition Example

Composition

Aggregation

Navigation in Associations

The open arrowhead shows that we can navigate from a or to its core classes, but not the reverse. Navigability shows whether an object can send messages to its associated objects. Below we see that a core class has no way to send a message to its associated major.

Lack of arrows may imply no navigability or unspecified navigability. Some tighter convention can be adapted by a designer.

An association class can be created to show that the association may have both attributes and operations. Warranty is an association class.

Named Associations

Associations can be unnamed, named by a verb phrase, or identified by role names at either end of the association. An optional arrow shows the direction of the association.

Alternatively, a class can have a role name specified. Role names aid in OO development with respect to responsibilities and operations.

Constraints on Classes

In this example, the solicitCode is set false on Student Customers. These constraints are useful in implementation models.

Interfaces are used to specify a set of operations for a model element. Interfaces do not specify attributes. The interface is usually marked with an <<interface>> stereotype.

The diagram below shows a DataSet realizes or supports the Transferable interface. A SocketConnection has an association to a DataSet and depends only on the Transferable interface.

Note the lack of navigation arrows, implying that navigation is not possible, or not defined.

Another way of showing interface realization is shown below. It looks like a form of generalization-specialization. This is due to the fact that an object of eBook or DataSet will behave like a Transferable type.

The diagram above shows that an eBook or DataSet both realize the interface Transerable.

Dependency

A usage of an interface can also be shown as follows. This shows that a SocketConnection object depends on the Transferable interface. It is important to note that the SocketConnection class does not implement the interface. We say that the SocketConnection class uses the interface. The stereotypes <<interface>> and <<use>> make the diagram more clear, but are not necessary.

Classes and Interfaces in Java Example

A parameterized class is a type of a class factory. Class Stack creates classes which supply a type for the T parameter. below, three classes are created in two different ways.

Interaction Diagrams: Sequence and Collaboration Diagrams

Interaction diagrams show how groups of objects work together in the system

A Chat Message Use Case Sequence Diagram

Another Sequence Diagram, with asynchronous messaging

A Client Create Sequence Diagram

A Collaboration Diagram for the Chat Message Use Case

State Diagrams

State Diagrams show the dynamic behavior of a system from an outside perspective. The diagram is divided into states and transitions.

states – describe the activity of the system, that is, the process of the state

transitions – describe the action of the system, where an action is a short process which moves the sys tem to a new state

State Diagram Example

Event [Guard] / Action

ChatServer

nameChatter : String

message : String

connections : Collection

socketListener : Socket

getNewConnection()

testConnection()

timeOutConnection()

disconnectUser()

sendData()

sendPrivate()

receiveData()

Thread

run()

ServerListener

nameChatter : String

message : String

processRequest()

run()

Core Class

Major

1..*

8..*

256

1

Position

Maze

Person

Car

Core Class

Major

Core Class

Major

Warranty

DataSet

streamOut()

streamIn()

streamIn()

<<interface>>

Transferable

streamOut()

streamIn()

Transferable

SocketConnection

eBook

DataSet

<<interface>>

Transferable

streamOut()

streamIn()

transfers

<<interface>>

Transferable

streamOut()

streamIn()

<<use>>

SocketConnection

Stack

push(element:T)

T pop()

T

SocketStack

TokenStack

<<bind>>Token

<<bind>>Socket

Stack<Position>

Log Onto Chatline

Quit Chatline

Send Message to SINGLE

Send Control Message

Send Message to ALL

Decode Chatter Message

<<include>>

<<include>>

Banned User

Chatline Manager

Internet Chatter

Start/Stop Chat Server

Chatline Manager

<<include>>

<<generalizes>>

Frequent Flyer

Buy Airline Tix

extension points

number of flights

payment history

senior citizen

<<extends>>

(number of flights

payment history)

ChatServer

Component which will take all incoming connections and keep communication with chat clients active. Live Connection management will be monitored

ChatServer

receive connections

manage clients

enable communication

Warranty

Person

Car

protects

covers

purchases

customer

customer

Warranty

Warranty

Person

Car

Person

Car

Student

Professional

{solicitCode = false}

{if income > 100000 then discountLease = true }

<<interface>>

ObjectOutput

ObjectOutputStream

Pixel

MyObjectSender

<<abstract class>>

OutputStream

Triangle

Square

4

{ordered}

<<dependency>>

<<sub interface>>

3

<<interface>>

DataOutput

X

aSendMessageWindow

client

Message()

* write()

aClientSocket

* recieve()

aServerSocket

mssgType := getMssgType()

new

aBroadcastMssg

Statej

do / activity

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

[validMssg]

kill

1.1.3: new

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: LogEntry

1.1.4: [validMssg]:new

* listenToChatter()

sendToServer()

mssgRequest()

aChatClientSender

new

aClientListener

new

aChatClient

X

recieve()

postToClient()

* listenToServer()

kill

logout

new

:BroadcastMssg

aLogEntry

1.1.2 getMssgType()

1.1.1 * recieve()

new

|

|

|

|

|

|

|

Statei

do / activity

:ServerSocket

1.1 * write()

:ClientSocket

1 :clientMessage()

:SendMessageWindow

Event [Guard] / Action

[All items checked and available]

Dispatching

do / initiate delivery

Checking

do / check item

<<subclass>>

Delivered

do / close

Waiting

start

/ get first item

Delivered

Item Received [some items not in stock]

[All items checked

but some not in stock]

Items Received [All items available]

[Not all items checked]

/ get next item

1:*

1:*

H/W Components

Cell Phone

Computer

1
1

