
Virtual Database Technology for Distributed Database

Yuji Wada
Department of Information

Environment
Tokyo Denki University

Inzai, Chiba, Japan
yujiwada@sie.dendai.ac.jp

 Yuta Watanabe
Department of Information

Environment
Tokyo Denki University

Inzai, Chiba, Japan

Keisuke Syoubu
Department of Information

Environment
Tokyo Denki University

Inzai, Chiba, Japan

Jun Sawamoto
Faculty of Software and Information Science

Iwate Prefectural University
Morioka, Iwate, Japan

sawamoto@iwate-pu.ac.jp

Takashi Katoh
Faculty of Software and Information Science

Iwate Prefectural University
Morioka, Iwate, Japan

Abstract— In this paper, our research objective is to develop a
database virtualization technique so that data analysts or other
users who apply data mining methods to their jobs can use all
ubiquitous databases in the Internet as if they were recognized as a
single database, thereby helping to reduce their workloads such as
data collection from the Internet databases and data cleansing
works. In this study, firstly we examine XML scheme advantages
and propose a database virtualization method by which such
ubiquitous databases as relational databases, object-oriented
databases, and XML databases are useful, as if they all behaved as
a single database. Next, we show the method of virtualization of
ubiquitous databases can describe ubiquitous database schema in a
unified fashion using the XML schema. Moreover, it consists of a
high-level concept of distributed database management of the same
type and of different types, and also of a location transparency
feature. Finally, we develop a common schema generation method
and propose the virtual database query language for use in a
virtualized ubiquitous database use environment.

Keywords-component; database virtualization; data mining;
XML schema; ubiquitous databases; database
integration;database query

I. INTRODUCTION
Nowadays, massive amounts of data are collected daily

in ubiquitous sensor network environments. With such data
available and elaborately structured, it is more important
than ever to locate and access knowledge and trends from it
using data mining techniques. Those data are valuable to
support analyses and decision-making in businesses, for
example. Such data normally exist in databases of various
types––called ubiquitous databases hereinafter––that might
usually be distributed and placed anywhere. A salient
problem, however, is that a person who engages in data
mining using ubiquitous databases would have to spend
much time for database selection and data collection, for
example, which would be merely a preparatory step to the
actual data mining tasks. What a person really should want

must be instead to concentrate on the work of analysis and
rule extraction.

In our study, the primary objective is therefore to
develop a virtualization technique so that the data analyst or
other user can use all ubiquitous databases as if they were
recognized as a single database, thereby helping to reduce
the user’s workload.

II. ASSOCIATED STUDIES
Some earlier reports in [1], [2] have described the study

of database virtualization technology.
One report [1] proposed development of a system to pass

information actively to all users in a mobile computing
environment without fail, as sourced from various types of
database groups connected by a wide-area network. By
image-copying of the data of the local database group to a
meta-database through the basic search and build
operations, for example, it is intended to combine data and
include different types of the local database group.

The data integration technique, teiid, which is described
in [2], enables virtualization of various types of databases;
through such virtual databases, one can access such data
sources as relational databases, web databases, and
application software such as ERP and CRM, for example, in
real time. They can all be integrated for use. In fact, teiid
has a unique query engine. Furthermore, the real-time data
integration is accomplished by connecting business
application software through the JDBC/SOAP access layer
with data sources which are accessed through the connector
framework.

In our study, we considered the metadata, UML, E–R
model, and the XML schema as candidates for use to
accomplish database virtualization. Thereby, ubiquitous
databases can be used as if they were a single database. We
then compared the advantages and disadvantages of each to
analyze them as follows.

2010 IEEE 24th International Conference on Advanced Information Networking and Applications Workshops

978-0-7695-4019-1/10 $26.00 © 2010 IEEE

DOI 10.1109/WAINA.2010.38

214

(1) The use of metadata presents many advantages for
creation that are irrelevant to what database model the
metadata are based on. On the other hand, an important
disadvantage is that they require a great workload to create
them in their initial stage. Moreover, no definition and
manipulation language to manage metadata has been
standardized yet.

(2) The UML and the E–R model have similar
fundamental characteristics; each has an advantage that its
database design concept structure is irrelevant to what data
model it is based on and with what DBMS product it is
associated. However, those are only a few design
techniques. No specific DBMS and definition manipulation
language are provided.

The matters described in (1) and (2) above subsume a
structured static schema for their use. Therefore, they have a
difficulty in use with databases of various kinds that are
available in the Internet in a flexible fashion.

(3) The XML scheme is now widely used to exchange
information in the Internet environment. Additionally, now
that more studies and further developments of XML
database management systems are made than ever before, it
is advantageous to use it because its definitions and
manipulations are well standardized in [3]. However, from a
data model perspective, it presents the problem that it does
not go well with any object-oriented data model that is now
associated with multimedia. Even given that fact, now that
the object-oriented concept is incorporated into the extended
standardization of the SQL language, it has been improved
in its affinity level with the associated XML scheme being
converted to a relational database scheme. In addition to
that, because the XML schema is a semi-structured dynamic
one, it is still advantageous because of the fact that it is
useful in a flexible fashion with various databases available
on the Internet.

In the relevant literature, several studies [4–8] of the
XML scheme conversion have been reported. One of those
reports [4] proposes an XML-to-relational mapping
framework and system that provides the first comprehensive
and end-to-end solution to the relational storage of XML
data. Another report [5] offers a flexible mechanism for
modifying and querying database contents using only valid
XML documents, which are validated over the XML-
Schema file’s rules. Another report [6] proposed cost-based
XML storage mapping engine explores the space of possible
XML-to-relational mappings and selects the best mapping
for a given application. Another report [7] describes the
integration of XML with a relational database system to
enable the storage, retrieval, and update of XML documents.
A common data model based on XML has been introduced
and schema mapping based on that approach has been
presented in [8].

Our study [9] examined XML scheme advantages and
proposes a virtualization method by which such ubiquitous
databases as relational databases, object-oriented databases,

and XML databases are useful, as if they all behaved as a
single database.

On the other hand, studies of recovery techniques from
database trouble are now well underway at a practical level
with respect to central databases or distributed databases,
and are widely used in the field of Online Transaction
Processing (OLTP). However, few practical studies have
been undertaken in environments associated with database
virtualization.

Therefore, we proposed a means to recover the
associated databases by allowing users to examine the
virtual environment only for ubiquitous databases without
having to examine real databases, and to ensure the integrity
between a virtual database and an associated real database in
[10].

In summary, the method of virtualization of ubiquitous
databases proposed in our study describes ubiquitous
database schema in a unified fashion using the XML
schema. Moreover, it consists of a high-level concept of
distributed database management of the same type and of
different types, and also of a location transparency feature.

In the following chapter, we are going to describe a
common schema generation method and propose the virtual
database query language for use in a virtualized ubiquitous
database use environment.

III. DATABASE VIRTUALIZATION
Databases of many kinds exist in terms of their

associated data model differences and vendor differences.
Regarding differences among data models, each has
different data representation, and unique associated
manipulation. Some typical examples include the table type
of relational databases (RDB), XML-representation type of
XML databases (XMLDB), and object-oriented databases
(OODB). Even the same model database might have
different features among vendors. Regarding RDB for
example, there might be some differences in SQL and/or
data type representation. The typical example is that we
have MySQL, PostgreSQL, and SQLServer, each of which
has a different vendor.

These differences according to the model and vendor
bring some undesired results. For example, we might end up
spending more time and labor during application system
development because of the different data models that must
be confronted. For example, we might need to acquire the
right API to handle data of every different type of database.
Virtualization of such different types of modeled databases
to unify the procedures for all of them would probably
impart less of workload and cost, and facilitate their
management in a more flexible manner. Consequently,
virtualization of databases, if it could be done, would
facilitate application system design and database
management as well.

To have a virtualization feature, we will consider the
inclusion of features to manage distributed databases of
similar types, the distributed databases of different types,

215

and provide location transparency for users, such that they
notice no differences of database structure or location and
become able to use databases of all kinds in a flexible
fashion. Fig.1 portrays a comprehensive view of a database
virtualization technique.

For virtualization of ubiquitous databases in our study,
we will describe the schema information of the real
databases, of which more than one always happens to exist,
by creating and using one common XML schema. We also
provide functionality of data search and update with the
XML-based common data manipulation API.

In the following, we will begin discussion of
virtualization of the same type of distributed database
followed by virtualization of different types of distributed
databases.

Figure 1. Database virtualization technique

A. Visualization of Homogeneous Distributed Databases
Described next, as the first step of database

virtualization, is a method of building a virtual database
management system for RDBs provided by different
vendors.

1) XML conversion program: Considering virtualization
not only for the RDB, but also for the different data models
such as XML DB and object-oriented DB, which will be
required in the next phase, we will use an XML scheme that
provides a flexible representation capability and a high
transparency capability.

To do so, we will produce such a virtualization concept
in which the user would feel as if he or she were locally
manipulating the remote-site RDB from a local RDB
process environment. That can be accomplished by
converting the schema information and data information of

the local RDB into the XML schema, and then storing that
information into the RDB that the user would like to
operate.

We developed an XML conversion program,
XMLExport/Import, as depicted in Fig. 2. We then used
such different vendor RDBs as MySQL, PostgreSQL, and
SQLServer2005 because they are available in the RDB
virtualization system creation environment. We used PHP as
the programming language to develop an XML
Export/Import system.

2) RDB schema conversion into XML: The following
describes how the RDB schema is converted into XML.
Fig.3 presents results of reading the schema information
from the RDB and converting it into XML. The RDB
schema information that is converted into an XML format
includes “table names”, “field names (associated data types
and default values)”, and “constraints (primary key
constraint, unique constraint, check constraint, NOT NULL
constraint, and foreign key constraint)”.

Figure 2. Virtualization technique for homogeneous distributed databases.

Regarding the XML tree structure, we described the
table information in the table_structure node with its
elements of Field=”column name”, Type=”data type”,
Null=”TRUE or FALSE” (NOT NULL constraint), as
shown in Fig. 3. We described the schema information in
the schema node with its elements of TYPE=”constraint
name”, Table=”table name”, Column=”column name”,
ReTable=”referenced table name”, ReColumn=”referenced
column name”, and Check=”rule”.

3) RDB data conversion into XML: The manner in
which the RDB data are converted into XML is described
next. Fig.4 portrays results of reading the data information
from the RDB and conversion into XML. Because of the
XML tree structure, we had dbname=”database name”,
tblname=”table name”, and the succeeding column
name=”actual data”.

Database Virtualization
Database Recovery

Homogeneously
distributed

DBMS

Heterogeneously
distributed DBMS

Location
transparency

Same
data

model

Different
data model

Distributed
location

Input Output

By vendor
MySQL

PostgreSQL
SQLServer

…

By data model
RDB

XMLDB
OODB
…

By location
DB in Tokyo
DB in Osaka

DB in other area
…

Data-mining
analyst-#1

Data-mining
analyst-#N

MySQL MSSQL PgSQL

Database
virtualization

XML Schema

RDB Schema
information

Data
information

XMLImport program

XMLExport program

…

216

Figure3. Example of RDB schema information conversion into XML.

Figure4. Example of actual RDB data conversion into XML.

B. Virtualization of Heterogeneous Distributed Databases
The second step we discuss is the virtualization of

modeled DBs of different types. For virtualization of
different types of modeled DB, we describe the schema
information of each model using a single common schema.
The common schema we will use is an XML Schema.
Around it, we will perform virtualization. Fig.5 presents a
virtualization method for different database types.

To accomplish schema conversion from a different
modeled database, we first get the schema information from
an RDB to work on. Then we convert it into the correct
XML schema for that RDB.

Table 1 presents schema conversion correspondences
between the two. Because any XML DB is already described
in the XML format, we extract the schema information
without conversion. For an OODB, we will use the object-

oriented functionality that is available because it is
fundamentally an extension of RDB.

Figure 5. Virtualization technology for heterogeneous distributed databases

Table 1 SQL and associated XML
 SQL XML

Table
definition

CREATE TABLE
table name…

<xsd: element
name=”table

name”…

Column
definition

CREATE TABLE…
column name...

<xsd: element
name=”column

name”…

Data type
definition

CREATE TABLE…
data type..

<xsd: element…
type=”data

type”…

Default values
CREATE TABLE…

column name DEFAULT
value

<xsd: element…
default=”value”…

Primary key
constraint PRIMARY KEY <xsd: key…

Unique
constraint UNIQUE <xsd:unique …

Foreign key
constraint FOREIGN KEY <xsd: keyref …

refer =…

NOT NULL NOT NULL <xsd:…
nillable=”false”...

Method CREATE METHOD

Inheritance
CREATE TABLE…
UNDER upper level

table name

<xsd:
complexType …

C. Common Schema Generation

The common schema provides the virtualized database
structure for the application programs, as shown in Fig. 5.
This schema is used to examine the syntax of query
sentences and the constraints. In this research, we developed
the common schema generation program which converts the
RDB schema into the common schema. In Fig.6, we show

<?xml version=”1.0” encoding”UTF-8” standalone=”yes”
-<root>

 -<rdb Name=”mysql”>
 -<database Name=”questionnaire” >

-<table_structure Name=”member”>
 <field Field=”samplenum” Type=”integer”

Null=”FALSE” Default=” />
<field Field=”answerday” Type=”text” Null=”FALSE”

Default=” />
 ….

 </table_structure>
-<schema>

 <constraint Type=”PRIMARY KEY”
Table=”member” Column=”samplenum” />

….
<constraint Type=”FOREIN KEY”

Table=”questionnaire” Column=”samplenum”
Retable=”member” ReColumn=”samplenum” />

….
 </schema>

</database>
</rdb>

</root>

-<root>
 -<dataset dbname=”mysql”>

 <data tblname=”member” samplenum=”10001”
answerday=”’2007/7/6’”

answertime=”’ 13:07:19:499’” />
<data tblname=”member” samplenum=”10002”

answerday=”’2007/7/6’”
answertime=”’ 13:10:33:507’” />

 ….
 </dataset>

</root>

XQuery

DATA

Schema

XML

DATA

Schema

Result User AP

RDB

Schema Conversion
Module

DATA

Schema

XQuery SQL

Common Schema Query Conversion
Module

217

the SQL/CREATE to converted. In Fig.7, we display the
conversion example of the following schema created by the
SQL/CREATE.

Figure 6. Example of SQL/CREATE.

Figure 7. Example of the common schema.

D. Query Conversion

We are now under development of the query language to
access the virtual databases. As shown in Fig.5, we are
planning the extension of the existing XQuery and the query
conversion program from the XQuery language into SQL
language or XQuery language Here, we show the sample of
the query program using XML which we are currently
investigating, as shown in Fig.8.

Figure 8. Sample of the virtual database query

IV. CONCLUSION
We developed the common schema conversion program for

RDB schema into XML schema. Especially, we showed the
schema constraints (such as PRIMARY KEY, CHECK, NOT
NULL, UPDATE CASCADE ON DELETE, UNIQUE) can be
converted.

In the future research, we are going to develop the integration
program of XML DB schema into the common schema. In addition,
we plan to implement the common data manipulation API (for
example, extension of the existing XQuery modules) to access the
virtual databases and we are going to incorporate location
transparency functions to this API.

ACKNOWLEDGMENT
This research was supported by a Grant-in-Aid for

Scientific Research C (Subject No. 20500095: Study of
Data utilization with Ubiquitous Database Virtualization
Technology).

REFERENCES
[1] K. Mori, S. Kurabayashi, N. Ishibashi, and Y. Shimizu,

Method of Sending Information Actively Reducing User
Information Load Dynamically in a Mobile Computing
Environment, DEWS2004 (March 2004).

[2] teiid, http://www.jboss.org/teiid, Red Hat
[3] S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web:

From Relations to Semistructured Data and XML, Morgan
Kaufmann Series in Data Management Systems (1999).

[4] S. Amer-Yahia, F. Du, and J. Freire, “A comprehensive
solution to the XML-to-relational mapping problem,” Proc.
6th Annual ACM International Workshop on Web
Information and Data Management, pp.31-38 (2004).

[5] I. Varlamis and M. Vazirgiannis, “Bridging XML-schema
and relational databases: a system for generating and
manipulating relational databases using valid XML
documents,” Proc. 2001 ACM Symposium on Document
engineering, pp.105-114 (2001).

[6] P. Bohannon, J. Freire, P. Roy, and J. Simeon, “From XML
Schema to Relations: A Cost-Based Approach to XML
Storage,” Proc. 18th International Conference on Data
Engineering, pp. 64-75 (2002).

[7] G. Kappel, E. Kapsammer, and W. Retschitzegger,
“Integrating XML and Relational Database Systems,” World
Wide Web: Internet and Web Information Systems, 7, pp.
343-384 (2004).

[8] R. Li, Z. Lu, W. Xiao, B. Li, and W. Wu, “Schema Mapping
for Interoperability in XML-Based Multidatabase Systems,”
Proc. 14th International Workshop on Database and Expert
Systems Applications, (2003).

<!— -->
<xs:element name="AffiliationTable" type="

AffiliationTable Type"/>
<xs:element name="EmployeeTable" type="

EmployeeTable Type"/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=" AffiliationTable Type">

<xs:annotation>
<xs:appinfo>

<r:index index-key="AffiliationID" primary="yes"/>
<r:index index-key="Affiliation" unique="yes"/>

</xs:appinfo>
<!— -->

<xs:complexType>
<xs:sequence>

<xs:element minOccurs="1" name="AffiliationID"
r:nullable="false"

<xs:element minOccurs="0" name="Affiliation"
r:sqltype="varchar"
<!— -->
<xs:complexType name=" EmployeeTable Type">

<xs:annotation>
<xs:appinfo>

<r:index index-key="EmploeyeID" primary="yes"/>
<r:check check-column="Salary" rule="0 <

"Salary""
<r:fkey fkey-column="AffiliationID" ref-

column="AffiliationID" ref-table="Affiliation

CREATEDB EmployeeDB;

CREATE TABLE EmployeeTable (

EmployeeID int PRIMARY KEY,
Name varchar(50) NOT NULL,

Salary int CHECK(0 < Salary),
AffiliationID int REFERENCES
AffiliationTable(AffiliationID)
ON UPDATE CASCADE ON DELETE CASCADE);

CREATE TABLE AffiliationTable (

AffiliationID int Primary Key,
Affiliation varchar(5) UNIQUE);

for $employee in common-schema()/DB1
/sample_db1/employee

for $manager in common-schema()/DB2
/sample_db2/affiliation.xml
where $employee/EmplyeID

= $manager/Affiliation/
return $employee/Name

218

[9] Y. Wada, Y. Watanabe, J. Sawamoto, and T. Katoh,”
Database Virtualization Technology in Ubiquitous
Computing,” Proc. 6th Innovations in Information
Technology (Innovations’09), pp.170-174 (2009-12).

[10] Y. Wada, Y. Watanabe, K. Syoubu, J. Sawamoto, and T.
Katoh, ”Virtualization Technology for Ubiquitous
Databases,” Proc. 4th Workshop on Engineering Complex
Distributed Systems (ECDS 2010) (2010-02)(to be appeared)

219

