Abstract

Advances in hardware and wireless network technologies have created low-cost, low-power, multifunctional miniature sensor devices. Sensor networks are dense wireless networks of small sensors, which collect and disseminate environmental data. The collected data or information is processed, interpreted and accordingly actions are performed. Wireless sensor networks facilitate monitoring and controlling of physical environments from remote locations with better accuracy. Even they have applications in a variety of fields such as environmental monitoring, military purposes and gathering sensing information from hostile locations. Sensor nodes have various energy and computational constraints because of their inexpensive nature and ad hoc method of deployment. Some challenging areas in the sensor networks are reduced energy consumption methods and effective routing techniques.
1. Introduction:

Recent technological improvements have made the deployment of small, inexpensive, low-power, distributed devices, which are capable of local processing and wireless communication, a reality. Such nodes are called as sensor nodes. Each sensor node is capable of only a limited amount of processing. But when coordinated with the information from a large number of other nodes, they have the ability to measure a given physical environment in great detail. Thus, a sensor network can be described as a collection of sensor nodes which co-ordinate to perform some specific action. Unlike traditional networks, sensor networks depend on dense deployment and co-ordination to carry out their tasks.

Previously, sensor networks consisted of small number of sensor nodes that were wired to a central processing station. However, nowadays, the focus is more on wireless, distributed, sensing nodes. But, why distributed, wireless sensing? When the exact location of a particular phenomenon is unknown, distributed sensing allows for closer placement to the phenomenon than a single sensor would permit. Also, in many cases, multiple sensor nodes are required to overcome environmental obstacles like obstructions, line of sight constraints etc. In most cases, the environment to be monitored does not have an existing infrastructure for either energy or communication. It becomes imperative for sensor nodes to survive on small, finite sources of energy and communicate through a wireless communication channel.

Another requirement for sensor networks would be distributed processing capability. This is necessary since communication is a major consumer of energy. A centralized system would mean that some of the sensors would need to communicate over long distances that lead to even more energy depletion. Hence, it would be a good idea to process locally as much information as possible in order to minimize the total number of bits transmitted.

2. Architecture:

This section outlines the requirements that shape the design of network sensor systems; later sections make these observations more concrete.

Small physical size and low power consumption: At any point in technological evolution, size and power constrain the processing, storage, and interconnect capability of the basic device. Obviously, reducing the size and power required for a given capability are driving factors in the hardware design. Likewise, the software must make efficient use of processor and memory while enabling low power communication.

Concurrency-intensive operation: The primary mode of operation for these devices is to flow information from place to place with a modest amount of processing on the fly, rather than to accept a command, stop, think, and respond. For example, information may be simultaneously captured from sensors, manipulated, and streamed onto a network. Alternatively, data may be received from other nodes and forwarded in multi-hop routing or bridging situations. There is little internal storage capacity, so buffering large amounts of data between the inbound and the outbound flows is unattractive. Moreover, each of the flows generally involves a large number of low-level events interleaved with higher level processing. Some of the high-level processing will extend over multiple real-time events.

Limited Physical Parallelism and Controller Hierarchy: The number of independent controllers, the capabilities of the controllers, and the sophistication of the processor-memory-switch level interconnect are much lower than in conventional systems. Typically, the sensor or actuator provides a primitive interface directly to a single-chip micro controller. In contrast, conventional systems distribute the concurrent processing associated with the collection of devices over multiple levels of controllers interconnected by an elaborate bus structure. Space and power constraints and limited physical configurability on-chip are likely to drive the need to support concurrency-intensive management of flows through the embedded microprocessor.

Diversity in Design and Usage: Networked sensor devices will tend to be application specific, rather than general purpose, and carry only the available hardware support actually needed for the application. As there is a wide range of potential applications, the variation in physical devices is likely to be large. On any particular device, it is important to easily assemble just the software components required to synthesize the application from the hardware components. Thus, these devices require an unusual degree of software modularity that must also be very efficient. A generic development environment is needed which allows specialized applications to be constructed from a spectrum of devices without heavyweight interfaces. Moreover, it should be natural to migrate components across the hardware/software boundary as technology evolves.

Robust Operation: These devices will be numerous, largely unattended, and expected to form an application which will be operational a large percentage of the time. The application of traditional redundancy techniques to enhance the reliability of individual units is limited by space and power. Although redundancy across devices is more attractive than within devices, the communication cost for cross device fail over is prohibitive. Thus enhancing the reliability of individual devices is essential. Additionally, we can increase the reliability of the application by tolerating individual device failures. To that end, the operating system running on a single node should not only be robust, but also should facilitate the development of reliable distributed applications.

SINA — A Middleware Architecture

Conceptually, a sensor network is modeled as a collection of massively distributed objects. SINA plays the role of middleware, allowing sensor applications to issue queries and command tasks into, collect replies and results from, and monitor changes within the networks. SINA modules, running on each sensor node, provide adaptive organization of sensor information, and facilitate query, event monitoring, and tasking capability.

In contrast to conventional distributed databases in which information is distributed across several sites, the number of sites in a sensor network equals the number of sensors, and the information collected by each sensor becomes an inherent part (or attributes) of that node. To support energy-efficient and scalable operations, sensor nodes are autonomously clustered. Furthermore, the data-centric nature of sensor information makes it more effectively accessible via an attribute-based naming approach instead of explicit addresses. SINA architecture consists of the following functional components.

Hierarchical Clustering — To facilitate scalable operations within sensor networks, sensor nodes should be aggregated to form clusters based on their power levels and proximity. The aggregation process could also be recursively applied to form a hierarchy of clusters. Within a cluster, a cluster head will be elected to perform information filtering, fusion, and aggregation, such as periodic calculation of the average temperature of the cluster’s coverage area. In addition, the clustering process should be reinitiated should the cluster head fail or run low on battery power. In situations where a hierarchy of clusters is not applicable, the system of sensor nodes is perceived by applications as a one-level clustering structure, where each node is a cluster head by itself. The clustering algorithm introduced in allows sensor nodes to automatically form clusters, elect and re-elect cluster heads, and reorganize the clustering structure if necessary.

Attribute-Based Naming — With the large population of sensor nodes, it may be impractical to pay attention to each individual node. Users would be more interested in querying which area(s) has temperature higher than 100°F, or what is the average temperature in the southeast quadrant, rather than the temperature at sensor ID#101. To facilitate the data-centric characteristics of sensor queries, attribute-based naming is the preferred scheme. For instance, the name [type = temperature, location = N-E, temperature = 103] describes all the temperature sensors located at the northeast quadrant with a temperature reading of 103°F. These sensors will reply to the query “which area(s) has temperature higher than 100°F.”

Location Awareness — Due to the fact that sensor nodes operate in physical environments, knowledge about their own physical locations is crucial. Location information can be obtained via several methods. Global Positioning System (GPS) is one of the mechanisms that provide absolute location information. For economical reasons, however, only a subset of sensor nodes may be equipped with GPS receivers and function as location references by periodically transmitting a beacon signal telling their own location information so that other sensor nodes without GPS receivers can determine their approximate positions in the terrain. Other techniques for obtaining location information are also available. For example, optical trackers give high precision and resolution location information but are only effective in a small region. With integration of these three components, the following two sample queries may be carried out effectively:

• Which area(s) has temperature higher than 100°F? In theory, the query is broadcast to and evaluated by every node in the network. Despite probably the best-returned result, the query would suffer from long response time. In practice, each cluster head may periodically update the temperature readings of its members, and the query can now be multicast to and evaluated by cluster heads only. This results in better response time at the expense of less accurate answers. Cluster heads of a higher tier can evaluate queries under stringent timing constraints.

• What is the average temperature in the southeast quadrant? Similarly, the average temperature of each cluster can be periodically updated and cached by cluster heads. Furthermore, the query should be delivered to nodes located (named) in the southeast quadrant only.
Tiny OS:

TinyOS is a component-based operating system that is specially designed for sensor networks.

An operating system framework is needed that will retain these characteristics by managing the hardware capabilities effectively, while supporting concurrency-intensive operation in a manner that achieves efficient modularity and robustness. It maintains a two-level scheduling structure, so a small amount of processing associated with hardware events can be performed immediately while long running tasks are interrupted. It provides high levels of concurrency that can be handled in a very small amount of space.

A stack-based threaded approach would require that stack space be reserved for each execution context. Power is the most precious resource. We believe that the event-based approach creates a system that uses CPU resources efficiently. The collection of tasks associated with an event is handled rapidly, and no blocking or polling is permitted. Unused CPU cycles are spent in the sleep state as opposed to actively looking for an interesting event.

A complete system configuration consists of a tiny scheduler and a graph of components. A component has four interrelated parts: a set of command handlers, a set of event handlers, an encapsulated fixed-size frame, and a bundle of simple tasks. Tasks, commands, and handlers execute in the context of the frame and operate on its state. Commands are non-blocking requests made to lower level components. a command will deposit request parameters into its frame and conditionally post a task for later execution. It may also invoke lower commands, but it must not wait for long or indeterminate latency actions to take place. A command must provide feedback to its caller by returning status indicating whether it was successful or not, e.g., buffer overrun.

Event handlers are invoked to deal with hardware events, either directly or indirectly. The lowest level components have handlers connected directly to hardware interrupts, which may be external interrupts, timer events, or counter events. An event handler can deposit information into its frame, post tasks, signal higher-level events or call lower level commands. A hardware event triggers a fountain of processing that goes upward through events and can bend downward through commands.
3. Energy Efficiency:

Energy consumption is the most important factor to determine the life of a sensor network because usually sensor nodes are driven by battery and have very low energy resources. This makes energy optimization more complicated in sensor networks because it involved not only reduction of energy consumption but also prolonging the life of the network as much as possible. Having energy awareness in every aspect of design and operation can do this. This ensures that energy awareness is also incorporated into groups of communicating sensor nodes and the entire network and not only in the individual nodes.

A sensor node usually consists of four sub-systems:

· A computing subsystem: It consists of a microprocessor (micro controller unit, MCU), which is responsible for the control of the sensors and execution of communication protocols. MCU’s usually operate under various operating modes for power management purposes. But shuttling between these operating modes involves consumption of power, so the energy consumption levels of the various modes should be considered while looking at the battery lifetime of each node.

· A communication subsystem: It consists of a short-range radio, which is used to communicate with neighboring nodes and the outside world. Radios can operate under the Transmit, Receive, Idle and Sleep modes. It is important to completely shut down the radio rather than put it in the idle mode when it is not transmitting or receiving because of the high power consumed in this mode.

· A sensing subsystem: It consists of a group of sensors and actuators and links the node to the outside world. Using low power components and saving power at the cost of performance, which is not required, can reduce energy consumption.

· A power supply subsystem: It consists of a battery, which supplies power to the node. It should be seen that the amount of power drawn from a battery is checked because if high current is drawn from a battery for a long time, the battery will die even though it could have gone on for a longer time. Usually the rated current capacity of a battery being used for a sensor node is lesser than the minimum energy consumption required leading to the lower battery lifetimes. Reducing the current drastically or even turning it off often can increase the lifetime of a battery.

Developing design methodologies and architectures, which help in energy aware design of sensor networks, can reduce the power consumed by the sensor nodes. The lifetime of a sensor network can be increased significantly if the operating system, the application layer and the network protocols are designed to be energy aware. Power management in radios is very important because radio communication consumes a lot of energy during operation of the system. Another aspect of sensor nodes is that a sensor node also acts a router and a majority of the packets, which the sensor receives, are meant to be forwarded. Intelligent radio hardware that help in identifying and redirecting packets, which need to be forwarded, and in the process reduce the computing overhead because the packets are no longer processed in the intermediate nodes.

Traffic can also be distributed in such a way as to maximize the life of the network. A path should not be used continuously to forward packets regardless of how much energy is saved because this depletes the energy of the nodes on this path and there is a breach in the connectivity of the network. It is better that the load of the traffic be distributed more uniformly throughout the network. It is important that the users be updated on the health of a sensor network because this would serve as a warning of a failure and aid in the deployment of additional sensors.

Younggang Zhao proposes a mechanism, which collects a residual energy scan (eScan) of the network, which is an aggregated picture of the energy levels in the different regions of the sensor network. They also propose to use incremental updates to scan so that when the state of a node changes, it does not have to send its entire scan again thereby saving energy.

4. Localization:

In sensor networks, nodes are deployed into an unplanned infrastructure where there is no a priori knowledge of location. The problem of estimating spatial-coordinates of the node is referred to as localization. An immediate solution, which comes to mind, is GPS [2] or the Global Positioning System. However, there are some strong factors against the usage of GPS. For one, GPS can work only outdoors. Secondly, GPS receivers are expensive and not suitable in the construction of small cheap sensor nodes. A third factor is that it cannot work in the presence of any obstruction like dense foliage etc. Thus, sensor nodes would need to have other means of establishing their positions and organizing themselves into a coordinate system without relying on an existing infrastructure.

Most of the proposed localization techniques today, depend on recursive trilateration/multilateration techniques. One way of considering sensor networks is taking the network to be organized as a hierarchy with the nodes in the upper level being more complex and already knowing their location through some technique (say, through GPS). These nodes then act as beacons by transmitting their position periodically. The nodes which have not yet inferred their position, listen to broadcasts from these beacons and use the information from beacons with low message loss to calculate its own position. A simple technique would be to calculate its position as the centroid of all the locations it has obtained. This is called as proximity based localization. It is quite possible that all nodes do not have access to the beacons. In this case, the nodes, which have obtained their position through proximity, based localization themselves act as beacons to the other nodes. This process is called iterative multilateration. As can be guessed, iterative multilateration leads to accumulation of localization error. Since most of the localization algorithms use some form of trilateration, a brief overview of trilateration based on [3], is given. Consider a person A, who wants to determine his position in 2-D space.

Suppose A knows that he is 10kms from a point x. Then he can determine that he is anywhere on the circle of radius 10kms around the point x. Now, if A also knows that he is 20 kms from a point y, A can deduce that he is on either one of the two intersecting point of the circle of radius 10km around x and the circle of radius 20km around point y. Suppose A also has additional information that he is 15km from a point z. Now he knows at which of the two intersecting points he is one because only one of them will intersect with the third circle also. This is shown in figure 1 below.

[image: image1.wmf]

[image: image2.png]

[image: image3.png]
Figure 1. Principle of trilateration in 2-D space

Thus, trilateration is a geometric principle which allows us to find a location if its distance from other already-known locations are known. The same principle is extended to three-dimensional space. In this case, spheres instead of circles are used and four spheres would be needed. This is the principle used in GPS also. Figure-2 demonstrates trilateration in 3-D space as used in GPS.

[image: image4.png]
Figure 2. Principle of trilateration in 3-D space as used in GPS.

When a localization technique using beacons is used, an important question would be 'how many initial beacons to deploy'. Too many beacons would result in self-interference among the beacons while too less number of beacons would mean that many of the nodes would have to depend on iterative multilateration.

4.1 Localization Techniques:

Localization can be classified as fine-grained, which refers to the methods based on timing/signal strength and coarse-grained, which refers to the techniques based on proximity to a reference point.

Examples of fine-grained localization are:

Timing: The distance between the receiver node and a reference point is determined by the time of flight of the communication signal.

Signal strength: As a signal propagates, attenuation takes place proportional to the distance traveled. This fact is made use of to calculate the distance.

Signal pattern matching: In this method, the coverage area is pre-scanned with transmitting signals. A central system assigns a unique signature for each square in the location grid. The system matches a transmitting signal from a mobile transmitter with the pre-constructed database and arrives at the correct location. But pre-generating the database goes against the idea of ad hoc deployment.

Proximity based localization:

There exists a localization system, which is RF-based, receiver-based, ad hoc, responsive, low energy consuming and adaptive. RF-based transceivers would be more inexpensive and smaller compared to GPS-receivers. Also in an infrastructure less environment, the deployment would be ad hoc and the nodes should be able to adapt themselves to available reference points.

A node, which has to calculate its position, receives signals from a collection of reference points. All these reference points have their connectivity metric above a pre-decided threshold. Connectivity metric is defined as the ratio of the total number of signals received by a node to the total number of signals sent by a node.

Once the node receives the signal, it calculates its position as the centroid of the positions of all the reference nodes as:

(Xest, Yest) = ((Xi1+…+Xik)/k, (Yi1+…+Yik)/k))

where Xi1, Yi1 gives the position of the first reference point, Xi2, Yi2 gives the position of the second reference point and so on. The accuracy of the estimate can be determined by calculating the localization error.

LE= ((Xest-Xa)2 + (Yest-Ya)2) ½

By increasing the range overlap of reference points, the accuracy of the location estimate improves.

4.2 Beacon/Node Placement Techniques:

Beacon placement techniques, which suggest themselves at once, are:

1. Uniform beacon placement,

2. Very dense beacon placement.
However these methods are not sufficient. Consider airdropped beacons over a hill.

Then the heavier beacons would roll down the hill while the lighter sensor nodes would remain atop. Similarly uniform placement does not necessarily ensure visibility. Cost/power might be a major consideration for dense placement. Even otherwise, as pointed out earlier, too many beacons cause self-interference. Various techniques that have been proposed to ensure optimum placement of nodes. Mostly, problems arise due to the unpredictable nature of environmental conditions. Nodes thus will also need to be able to adapt to environmental changes.

Some of them are listed here:

1. Random: As the name suggests, any random location is chosen as a suitable candidate.

2. Max: In this case, the terrain is divided into step*step squares. The localization error is calculated at each square corner. A beacon is added at the point, which has the maximum localization error. Even though this approach is simple, it suffers from being overly influenced by propagation effects or random noises. Figure 3 illustrates the Max algorithm.

[image: image5.wmf]

[image: image6.wmf]
Figure 3. The MAX and the GRID protocols

3. Grid: The Grid approach computes the cumulative localization error over each grid for several overlapping grids as illustrated in figure 3. A new beacon is added at the center of the grid, which has the maximum cumulative localization error.

4. HEAP: The Heap algorithm incorporates the concepts of the max and grid algorithms. It further details the actual implementation of the algorithm. It also proposes a technique called STROBE (Selectively Turning Off BEacons) for achieving adaptive operational density of beacons. The goal of the system is to extend the lifetime of the sensor network, achieve uniform granularity and minimize energy consumption. The crux of the idea is as follows. When a high density of beacons is deployed, only a certain percentage of the beacons are activated. This ensures that the duty cycles of individual beacons are reduced while still maintaining the same level of granularity thus meeting the above three goals.

In the STROBE technique, each node can be in one of the three self-explanatory states:

BEACON_ONLY, LISTEN AND BEACON and SLEEP. Separate states are needed for BEACON and LISTEN AND BEACON since listening also consumes energy. All beacons start in the LB state. In the LB cycle, each node evaluates its connectivity, i.e., the total number of beacons it has heard from. When the connectivity exceeds a pre-determined threshold, the node goes either into SLEEP or BO state with a calculated probability. This method does not take into account factors like residual energy in other nodes etc.

5. Routing:

Conventional routing protocols have several limitations when being used in sensor networks due to the energy-constrained nature of these networks. These protocols essentially follow the flooding technique in which a node stores the data item it receives and then sends copies of the data item to all its neighbors. There are two main deficiencies to this approach.

Implosion: If a node is a common neighbor to nodes holding the same data item, then it will get multiple copies of the same data item. Therefore, the protocol wastes resources sending the data item and receiving it.

Resource management: In conventional flooding, nodes are not resource-aware. They continue with their activities regardless of the energy available to them at a given time. The routing protocols designed for sensor networks should be able to overcome both these deficiencies or/and look at newer ways of conserving energy increasing the life of the network in the process. Ad-hoc routing protocols are also unsuitable for sensor networks because they try to eliminate the high cost of table updates when there is highly mobility of nodes in the network. But unlike ad-hoc networks, sensor networks are not highly mobile. Routing protocols can be divided into proactive and reactive protocols. Proactive protocols attempt at maintaining consistent updated routing information between all the nodes by maintaining one or more routing tables. In reactive protocols, the routes are only created when they are needed. The routing can be either source-initiated or destination-initiated. Some of the routing protocols, which have been proposed for sensor networks aimed at eliminating the above-menntioned problems, are the following.

5.1 Negotiation based protocols:

These protocols, called the SPIN (Sensor Protocols for Information via Negotiation) protocols aim at disseminating information among all the sensor nodes by using information descriptors for negotiation prior to transmission of the data. These information descriptors are called meta-data and are used to eliminate the transmission of redundant data in the network. In SPIN, each sensor node also has its own resource manager that keeps track of the amount of energy that the particular node has. Prior to transmission or processing data, the nodes poll their resource manager if they have enough energy or not. This allows the nodes to cut back on activities when their resources are low increasing the life of the node in the process. The SPIN family of protocols uses three messages for communication.

ADV: When a SPIN node has some new data, it sends an ADV message to its neighbors containing meta-data (data descriptor).

REQ: When a SPIN node wished to receive some data, it sends an REQ message.

DATA: These are actual data messages with a meta-data header.

The following protocols make up the SPIN family of protocols.

1. SPIN-PP: This protocol has been designed to perform optimally for point-to-point communication. In this sort of communication, two nodes can have exclusive communication with each other without any interference from the other nodes. In such a network, the cost of communication for one node to communicate with n nodes is n times more expensive than communicating with one node. This protocol is a simple 3-way handshake protocol in which energy is not considered to be a constraint. When a node has some new data, it advertises this new data using the ADV messages to its neighbors. When a neighboring node receives this advertisement, it checks the meta-data to see whether it already has the data item or not. In case it does not, it sends an REQ message back requesting for the data item. Upon receiving the REQ message, the originating node sends DATA messages containing the missing data to the requesting node. One major advantage of using this protocol is its simplicity and that each node requires to know only bout its single-hop neighbors and does not require any other topology information.

2. SPIN-EC: In this protocol, the sensor nodes communicate using the same 3-way handshake protocol as in SPIN-PP but there is a energy-conservation heuristic added to it. A node will participate actively in the protocol only if it is above a certain energy threshold and believes it can complete all the other stages of the protocol. If a node receives an advertisement, it will not send out an REQ message if it does not have enough energy to transmit an REQ message and receive the corresponding DATA message.

3. SPIN-BC: This protocol was designed for broadcast networks in which the nodes use a single shared channel to communicate. When a node sends out a message, all the other nodes within a certain range of the sender receive it. In this protocol, a node, which has received an ADV message, does not immediately respond with an REQ message. It has to wait for a certain time before sending out the REQ message. When a node other than the advertising node receives the REQ message, it cancels its own request so that there are no redundant requests for the same message. When the advertising node receives an REQ message, it sends the data message only once because it is a broadcast network even though it might have got multiple requests for the same message.

4. SPIN-RL: This protocol makes two changes to the above SPIN-BC protocol. Each node keeps track of all the advertisements it hears and the nodes it hears them from. If it does not receive any requested data within a certain period of time, it sends out the request again. Next, the nodes have a limit on the frequency with which they resend the data messages. After sending out a data message, a node will wait for a certain period of time before it responds to other requests for the same data message.

Directed Diffusion:

This is another data dissemination protocol in which attributevalue pairs name the data generated by the nodes. This is a destination-initiated reactive routing technique in which routes are established when requested. A sensing task or interest is propagated throughout the network for named data by a node and data, which matches this interest, is then sent towards this node. One important feature of the data diffusion paradigm is that the propagation of data and its aggregation at intermediate nodes on the way to the request-originating node are determined by the messages, which are exchanged between neighboring nodes within some distance (localized interactions). Tasks are described by a list of attribute-value pairs that describe the task. This description is called an interest. The data, which is sent as a response to such an interest, is also named in a similar manner. The querying node is the sink node and it broadcasts its interest message periodically to all of its neighbors. All nodes have an interest cache in which each item corresponds to a different interest. These entries do not contain any information about the sink node though.

[image: image7.wmf]
Figure 4. Schematic diagram for directed diffusion

An entry has several fields - timestamp field, which contains the last, received matching interest, the gradient fields contain the data rate specified by each neighbor, the duration field that contains the lifetime of the interest. When a node receives an interest, it checks its interest cache to check if it has entry. It creates one if there is no matching interest and a single gradient field is created towards the neighbor from which the interest is received. If the interest exists, the timestamp and the duration fields are updated in the entry. A gradient is removed from its interest entry when it expires. A gradient specifies both the data rate as well as the direction in which the events are to be sent. A node may send an interest it receives to some of its neighbors to whom it will appear as if this node itself is the originating node. Therefore, there is diffusion of interests throughout the network. A sensor node, which detects an event, searches its interest cache for a matching interest entry. If it finds one, it generates even samples at the highest data rate which it computes from the requested event rates of all its outgoing gradients. The event description is then sent to all its neighboring nodes for which it has gradients. Therefore the sink starts receiving low data rate events, when an event is observed, possibly along multiple paths. The sink then reinforces one particular neighbor to get the better quality events. This could result in more than one reinforced paths in which case, the better performing path is retained and the others are negatively reinforced by timing out all the high data rate gradients in the network while periodically reinforcing the chosen path.

6. Sensor Networking Systems:

This section looks at some systems based on sensor-networking concepts, which have been developed by various groups. Most of the systems deal with location of persons/objects.

The Active Badge Location System is a system for locating personnel/objects inside a building. Each person/object, which has to be located, is tagged with an Active Badge, which emits a unique infrared code every 10th of a second. Networked sensors around the building pick up these signals. On the basis of the information provided by the sensor the location of the tag and hence the person/object can be determined. This system is actually in commercial use now.

Pin-point 3D-iD local positioning system described in [28] also deals with a similar problem of locating an item in 3-D space inside a location fixed by boundaries. The system consists of 3D-iD readers and tags. The readers emit codes that are received by the tags and transponder back to the reader after changing the signal's frequency. Based on the round trip time of flight, the distance of the tag from the antenna is calculated. It has an accuracy of 1-3metres.

7. Simulators for Sensor Networks:

The following are some of the more prominent simulators for sensor networks available today

1. NS-2: The mother of all network simulators has facilities for carrying out both wireless and wired simulations. It is written in C++ and oTCL. Since it is object-oriented, it is easier to add new modules. It provides for support for energy models. Some example applications are included as a part of the package. It has the advantage of extensive documentation.

2. GloMoSim: GLobal MObile Information systems SIMulator is a scalable simulation environment for wireless and wired network systems. It is written both in C and Parsec. It is capable of parallel discrete-event simulation. GloMoSim currently supports protocols for a purely wireless network. A basic level of Parsec knowledge and thorough C knowledge is sufficient to carry out simulations.

3. SensorSim: is a simulation framework for sensor networks. It is an extension to the NS simulator. It provides the following: Sensing channel and sensor models, Battery models, Lightweight protocol stacks for wireless micro sensors, Scenario generation and Hybrid simulation. It is geared very specifically towards sensor networks and is still in the pre-release stage.

8. Conclusion:

Sensor Networks hold a lot of promise in applications where gathering sensing information in remote locations is required. It is an evolving field, which offers scope for a lot of research. Their energy-constrained nature necessitates us to look at more energy efficient design and operation.

.

9. References:

1. http://www2.parc.com/spl/members/zhao/stanford-cs428/
2. http://geometry.stanford.edu/member/guibas/
3. http://www.eng.auburn.edu/users/lim/sensit.html/
4. http://pdos.csail.mit.edu/span/
5. http://wwwcsif.cs.ucdavis.edu/~bharathi/sensor/snw.html/
6. http://theory.stanford.edu/~cesar/
7. http://www.tinyos.net/
8. http://citeseer.ist.psu.edu/cis/
9. http://www.research.rutgers.edu/~mini/sensornetworks.html/
10. http://www.cs.duke.edu/~alvy/courses/sensors/Papers.html/
11. http://bit.csc.lsu.edu/news/faculty-candidate.html/
