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Chapter 1

INTRODUCTION

1.1 Introduction

Encryption of the image and audio data using the conventional methods of cryptography has certain limitations in the cryptographic strength and large computational effort due to huge amount of data and high correlation among pixels. Some of the popular public key encryption methods, such as RSA, El Gamal are not suitable for encryption of large data files and images, because their encryption rate is slow. Moreover, the security of such public key cryptographic schemes relies on the inability to perform factorization of large numbers or to solve the discrete logarithm problem in a fast, efficient manner. Private key encryption algorithms, such as DES, 2DES, 3DES, AES, IDEA etc. are based on several iterative steps consisting of substitution and permutation. The security is mostly guaranteed by substitution, while the permutation part is somewhat neglected. It is general belief that utilization of complicated permutations might significantly increase the security of the whole cipher.

Chaos-based image-encryption approaches have shown some exceptional properties in the aspects concerning security, complexity, speed, computing power, computational overhead etc [1]. It is not a very new idea and many researchers have proposed different types of such encryption. In chaotic key-based algorithm, image pixels are rearranged based on the time series [2]. This method is very simple, but is weak to the chosen/known-plaintext attack using only one plain image [3]. Scharinger proposed chaotic Kolmogorov flow based image encryption [4]. The whole image is taken as a single block in this scheme, and permuted through a key-controlled chaotic system based on Kolmogorov flow. In order to confuse the data, substitution is applied, which alters the statistical property of the cipher-image. The scheme is computationally secure and superior to contemporary block encryption systems for image and video data encryption. For advancing the quality of encryption effectively, the method of position scrambling can be used before encryption. Some classical scrambling algorithms are Cat map [5-8], baker map [1,9], affine transformation [10], magic-square transformation [11], knight-tour transformation [12], standard map, tent map etc. Among these maps, Cat map and baker map attract much attention. Cat map is a two-dimensional chaotic map introduced by Arnold and Avez. Baker map is another two-dimensional chaotic map based on which Pichler and Scharinger first introduced their encryption schemes. In [1], a symmetric image encryption scheme based on 3-D chaotic Cat map was proposed. The 2-D chaotic Cat map was generalized to 3-D for designing a real-time secure symmetric encryption scheme, which employed 3-D Cat map to shuffle the positions of image pixels and used another chaotic map to confuse the relationship between the cipher-image and the plain-image. In [13], baker map was further extended to 3-D. An alternative chaotic image encryption based on baker map that supports a variable-size image and includes other functions such as password binding and pixel shifting to further strengthen the security of the cipher-image was proposed [14]. In [15], Baptista proposed a chaotic encryption based on partitioning the visiting interval of chaotic orbits of the logistic map.

1.2 Motivation of the Present Work

Though public key algorithms, such as RSA, El Gamal and private key algorithms, such as DES, 2DES, 3DES, AES, IDEA are popular encryption schemes, these methods are not suitable for encryption of large data files and images, because their encryption rate is slow, On the other hand, chaotic map algorithms are appropriate for image encryption, in which speed is an essential criterion. We propose an encryption scheme for images that uses combination of chaotic Cat map and simplified data encryption standard (S-DES). The proposed scheme takes the advantages of Cat map particularly suitable for image encryption at high speed and S-DES for realization of DES with smaller key size.  In this scheme, the key of S-DES can be changed in real-time. 

1.3  Organisation of the DISSERTATION
The organization of our dissertation is as follows. 

In Chapter 2, we introduce the background and earlier works of the research containing the chaos, the concepts of cryptography, describes the main features of chaotic Cat map and simplified data encryption standard, the relationship between chaos and cryptography and historical review of chaotic image encryption. 

In Chapter 3, we describe our proposed new scheme of chaotic image encryption involving the image encryption algorithm and experimental results. 

In Chapter 4 is on conclusions and future works.
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Chapter 2
Background and Earlier works of the Research

2.1 Chaos

Chaotic theory has been established since 1970s from many different research areas, such as physics, mathematics, biology and chemistry, etc. [20]. The most well-known characteristics of chaos are the so-called "butterfly-effect" (the sensitivity to the initial conditions), and the pseudo-randomness generated by deterministic equations. Many researchers have pointed out that there exists tight relationship between chaos and cryptography [16-20]. Many fundamental characteristics of chaos, such as the mixing property and the sensitivity to initial conditions, can be connected with "confusion" and "diffusion" property in good ciphers. Considering chaotic theory has developed well in recent decades, chaos may become a new rich source of new ciphers [20]. We use the chaotic characteristic for encrypting image to generate good ciphertext.

We will below make a description for chaos, including the properties of chaos and two-dimensional chaotic maps.
2.1.1 The properties of chaos
Chaotic systems have sensitive dependence on initial conditions. If two initial points are chosen very close to each other, the distance between their successive orbits under chaotic map diverges exponentially. Hence, a chaotic system can be used as a pseudo-random number generator [21].

Chaos is an inherent property of a class of nonlinear systems. It manifests itself in the sensitivity of solutions to initial conditions; a property advantageous in generating versatile synthetic sequences or solutions. In fact, a chaotic system contains an in finite number of unstable periodic orbits, which if modeled linearly requires an infinite dimensional model to cover the broadband (infinite) frequency spectrum presented in chaotic sequences [22].

The characteristics of chaotic systems are [23-24]: 

i.   Deterministic:   This   means   that   they   have   some   determining mathematical equations ruling their behavior.

ii.    Unpredictable and non-linear: This means they are sensitive to initial conditions. Even a very slight change in the starting point can lead to a significant different outcome.

iii.   Appears to be random and disorderly but in actual fact they are not. Beneath the random behavior, there is a sense of order and pattern. 

Chaotic phenomenon is certain and analogously stochastic process appearing nonlinear dynamical system [25-28]. Such process is nonperiodic and nonconvergent and has extreme sensitive dependency to initial conditions [28]. In the next section we will discuss to analyze the characteristics of chaotic systems by observing a simple chaotic system called a Cat map, so named because it was first used by Vladimir I. Arnold using a picture of a Cat.

2.2 Cat Map 

2.2.1   Introduction

The particular instance of chaos is the chaotic mapping called Arnold’s Cat map in recognition of Russian mathematician Vladimir I. Arnold, who discovered it using an image of a Cat. It is a simple and elegant demonstration and illustration of some of the principles of chaos – namely, underlying order to an apparently random evolution of a system. An image (not necessarily a Cat) is hit with a transformation that apparently randomizes the original organization of its pixels. However, if iterated enough times, as though by magic, the original image reappears. 

The classical Arnold Cat map is a two-dimensional chaotic map [29] described by
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where 
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 is the pixel position in the N  x  N image and 
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 is the transformed position after applying Cat map; a and b are two control parameters and are positive integers. 

Cat map preserves area, since the determinant of its linear transformation matrix is equal to 1. It is one-to-one mapping, that is, each point in the matrix can be transformed to another point uniquely. Image position is scrambled via the iteration of Cat map, consequently realizing the image encryption. The result of scrambling is different for different iteration times. Periodicity changes for different parameters of a, b and the size of the image. The two parameters a and b are the key of Cat map. 

2.2.2 Cat Map Transformation  

 If [image: image5.png]
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 is a point of a pixel of an 
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 image, then Cat map transformation of an image can be defined in three steps: 

1) Shear the image in the x-direction with a factor of 1 :
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(2.2)

2) Then, shear the image in the y-direction with a factor of 1:
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3) Finally, reassemble the image back into 
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   So, we will define this transformation in general as: 
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   (2.5)
    The effect of the [image: image15.png]


 mod operation is to make the image back into an [image: image16.png]



 N x N image by forcing all the points into the interval [0, N-1]. Mathematically the [image: image17.png]


mod operator does this by returning the remainder after division of the point coordinates by N. Visually it does this by cutting the pieces of the sheared image into a single square without any overlap, as shown in the following figures. [image: image18.png]
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Figure  2.1: Cat map steps.

In most system, we are interested in what will happen to the image over a certain iteration times. Thus, multiple Cat map transformations, or iterations, can be defined as the following:
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where 
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 i is the number of iterations to perform. Also note that taking the [image: image23.png]
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 A to the power has the same effect as would be performing [image: image25.png]
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 multiple times but separately. This is so because the [image: image27.png]


 mod operator takes those points, no matter where they are at in [image: image28.png]
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N x N square. 
   For example, suppose the situation when N= 329 and we wish to observe the point [image: image31.png]
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 5 Cat map iterations is illustrated below:
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 5 times we get: 


[image: image37.wmf]45174148270471

1293031226367138

éùéùéùéùéùéù

®®®®®

êúêúêúêúêúêú

ëûëûëûëûëûëû

 

and using [image: image38.png]
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2.2.3 Periodicity of Cat map:

    An important property of the Cat map is periodicity. Since [image: image41.png]
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maps points of a square image back onto the original square, we can see that eventually the points will return to their original positions. We call the period of a pixel the amount of iterations it takes to transform a pixel back to its original position. Since the shearing factor causes the pixels of the image to contain different pixel periods. However, when the number of iterations equals the least common denominator of the all of the pixel periods in an image, the image will be transformed back into the original image. We call this the period of the image and define it symbolically as: 
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     Since the period of the image is the number of iterations it takes all points in the image to return to their original position, it shows that: 
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 And since 
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     While the period of the image varies with [image: image48.png]


N, it seems to vary erratically with [image: image49.png]


N. So there are no simple functions that will return the period of all images. However, experiments have shown that there are a few functions that do calculate the period of certain images: 
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1 and ending when we find the first [image: image74.png]


k that makes the above equation equal to the identity matrix, so that value of [image: image75.png]
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    It shows from the following figures below of the picture of a cat, where [image: image78.png]
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Figure 2.2: Recovering of the encrypted image.

As can be seen from the preceding figures, the cat image after the first few iterations becomes parallel lines stretched up and to the right and the last few iterations seem to compress parallel lines that are pointing up and to the left back into the original cat image. To explain this, first we must find the eigenvalues and the subsequent eigenvectors. 

 From the characteristic equation we get: 


[image: image85.wmf]ll

l

ll

--

éùéù

-=-=

êúêú

--

ëûëû

01111

det()

01212

IA



[image: image86.wmf]22

(1)(2)(1)(1)(32)(1)310

llllll

=-----=-+-=-+=


        Using the quadratic formula and the fact that [image: image87.png]
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     The eigenvectors, denoted [image: image96.png]
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    The following shows a graph of the two eigenvectors, where [image: image108.png]
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but decrease its width. 

Figure 2.3: Eigenvector directions.

2.2.4 Linear Transformation: 

    We have seen thus far is not a linear transformation since it uses the [image: image116.png]
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N x N image and perform the Cat map transformation on each image of the tile without performing [image: image120.png]
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mod N. Since each iteration on the tiles draws from an infinite amount of other tiles, the period of the image will be the same since after [image: image122.png]
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Figure 2.4: Encrypted images at different iteration numbers

        Also, we can now find the positions of pixels before the iterations since the [image: image130.png]
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From these results we can conclude that each pixel of a single image of the plane flows away from their original spot, but identical pixels from other images flow towards that same spot since the pixels follow the general direction of the flow lines of the eigenvectors.

2.2.5 Cat Map as Chaos:
Now that we have a good understanding of the Cat map transformation we can go back and define what it means for a system to be chaotic. Although there are many different definitions for chaos available, we will be using the definition first used by Robert Devaney in 1989. This definition has two parts.

1) Arbitrarily close to every point [image: image148.png]
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2) There is a point whose iterates under [image: image155.png]
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are dense, or spread out     over the square. 

To help prove that the Cat map holds under this definition, first let us consider that not only does the Cat map transformation hold for rational points (integers), but also irrational points. The first part of the definition of chaos simply means that slight deviations on the measurement of the initial state leads to a large error on the outcome state, an error that will exponentially grow with each iteration that is performed. To show this, consider a point be iterated 25 times:   
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This shows that even with a small error, iterating this point 25 times magnifies that small error a magnitude of over a billion! Indeed, the sensitivity to initial conditions means that most times only the first few states can be found accurately before the error factor obscures the later states of the system. 

As an example of this sensitivity, suppose we measure an initial point that is actually [image: image159.png]
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 s are the two ending points, the red dots are the iterates of the truly accurate point, and the blue circles are the iterates of the measured point. As can be seen, the first 8 or 9 iterations of both points are at the same point but after that they start diverging from each other. 
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Figure 2.5: Distribution of Cat map for 150 iterations.

The Cat map also satisfies the second part of the definition of chaos in that all rational points and most irrational points are dense under the Cat map transformation. And since irrational points under [image: image170.png]
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 are not periodic like rational points, they map to a unique point under every iteration. The following plot shows the point [image: image172.png]
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Figure 2.6:  Distribution of Cat map for 10000 iterations.

As we have seen, the Cat map transformation does show the basis ingredients of a chaotic system but is by no means a complex system. Assuming that we know the exact value of the point that we want to iterate, we can find the spot that the point will iterate to no matter how much iteration we perform. This type of chaos is called deterministic chaos. We would certainly like to be able to get all dynamical systems down to a having deterministic chaos, but one thing that has to be accounted for is and is still the biggest problem today is the sensitivity to initial conditions that these systems abide by. As technological advances in measuring devices and other means of calculations increase over time, we must realize that even the best piece of equipment will never be able to completely measure a state of some systems accurately. The best that can be hoped for is that the error deviation will be small enough to not show up in the amount of time or iterations that we must try and predict in a system.

2.3 Encryption and decryption

Data that can be read and understood without any special measures is called plaintext or cleartext. The method of disguising plaintext in such a way as to hide its substance is called encryption. Encrypting plaintext results in unreadable gibberish called ciphertext. You use encryption to ensure that information is hidden from anyone for whom it is not intended, even those who can see the encrypted data. The process of reverting ciphertext to its original plaintext is called decryption.

Encryption has been used for probably as long as people have been talking and wishing to keep their communications secret.  The Greeks provide the first recorded use of ciphers using numerical substitutions. These usually operated by writing the alphabet into a grid and then using the grid co-ordinates to substitute for each letter in a message:

	
	1 
	2 
	3 
	4 
	5 

	1
	A
	B
	C
	D
	E

	2
	F
	G
	H
	I/J
	K

	3
	L
	M
	N
	O
	P

	4
	Q
	R
	S
	T
	U

	5
	V
	W
	X
	Y
	Z


SEND REINFORCEMENTS TO ITHACA 

34 51 33 41 24 51 42 33 12 43 24 31 51 23 51 33 44 34 44 43 42 44 32 11 31 11

The cipher can be easily changed by altering the pattern of the letters in the matrix.

Julius Caesar also used a simple substitution cipher, using the normal alphabet, but swapping one letter for another. In this system, Caesar wrote D instead of A and E instead of B - so the sentence "Trouble at the Forum" would be written WURXE OHDWW KHIRU XP (ciphertext is normally broken into even sized groups, to disguise the size of each word and also reduce the possibility of mistakes in transmitting a long string of letters). More complicated substitution ciphers were also commonly used by important figures - particularly royalty - in the 16th to 18th centuries.

Encryption has long been used by militaries and governments to facilitate secret communication. Encryption is now used in protecting information within many kinds of civilian systems, such as computers, networks (e.g. the Internet e-commerce), mobile telephones, wireless microphones, wireless intercom systems, Bluetooth devices and bank automatic teller machines. Encryption is also used in digital rights management to prevent unauthorized use or reproduction of copyrighted material and in software also to protect against reverse engineering.

Encryption, by itself, can protect the confidentiality of messages, but other techniques are still needed to protect the integrity and authenticity of a message; for example, verification of a message authentication code (MAC) or a digital signature. Standards and cryptographic software and hardware to perform encryption are widely available, but successfully using encryption to ensure security may be a challenging problem. A single slip-up in system design or execution can allow successful attacks. Sometimes an adversary can obtain unencrypted information without directly undoing the encryption. 

2.4 Cryptography

2.4.1 Introduction
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The concepts of cryptography make an illustration as follows as shown in Figure 2.7 [30-32]. An encryption system is also called a cipher, or a cryptosystem. The message for encryption is called plaintext, and the encrypted message is called ciphertext. Denote the plaintext and the ciphertext by P and C, respectively. The encryption procedure of a cipher can be described as C = Eke(P), where Ke is the encryption key and E(.) is the encryption function. Similarly, the decryption procedure is P = DKd (C), where Kd is the decryption key and D(.) is the decryption function. Following Kerckho's principle [20], the security of a cipher should only rely on the decryption key Kd, since adversaries can recover the plaintext from the observed ciphertext once he gets Kd.

Figure 2.7 Encryption and decryption of a cipher

There are two kinds of ciphers following the relationship of Ke and Kd. When Ke = Kd, the cipher is called a private-key cipher or a symmetric cipher. For private-key ciphers, the encryption-decryption key must be transmitted from the sender to the receiver via a separate secret channel. When Ke # Kd, the cipher is called a public-key cipher or a asymmetric cipher. For public-key ciphers, the encryption key Ke is published, and the decryption key Kd is kept private, for which no additional secret channel is needed for key transfer.

According to the encryption structure, ciphers can be divided into two classes: block ciphers and stream ciphers. Block ciphers encrypt the plaintext block by block, and each block is mapped into another block with the same size. Stream ciphers encrypt the plaintext with a pseudo-random sequence (called keystream) controlled by the encryption key.

A cryptographically secure cipher should be strong enough against all kinds of attacks. For most ciphers, the following four attacks should be tested:

 l)
ciphertext-only attack - attackers can get the ciphertexts only;

2) 
known-plaintext attack - attackers can get some plaintexts and the corresponding plaintexts;  

3)  
chosen-plaintext attack -  attackers  can choose  some  plaintexts   and  get  the  corresponding  ciphertexts;  

4) 
chosen-ciphertext attack - attackers can choose some ciphertexts and get the corresponding plaintexts. It is known that many mage/video encryption schemes are not secure enough against chosen -plaintext attack [30].

2.4.2 Strength of the Cryptosystem:

The strength of the encryption method comes from the algorithm, secrecy of the key, length of the key, initialization vectors, and how they all work together. When strength is discussed in encryption, it refers to how hard it is to Figure out the algorithm or key, whichever is not made public. Breaking a key has to do with processing an amazing number of possible values in the hopes of finding the one value that can be used to decrypt a specific message. The strength correlates to the amount of necessary processing power and time it takes to break the key or Figure out the value of the key. Breaking a key can be accomplished by a brute force attack, which means trying every possible key value until the resulting plaintext is meaningful. Depending on the algorithm and  length of the key, this can be a very easy task or a task that is close to impossible. If a key can be broken with a Pentium II processor in three hours, the cipher is not strong at all .If the key can only be broken with the use of a thousand multiprocessing systems, and it takes 1.2 million years, then it is pretty darn strong. The goal of designing an encryption method is to make compromise too expensive or too time consuming. Another name for cryptography strength is work factor, which is an estimate of the effort it would take an attacker to penetrate an encryption method. The strength of the protection mechanism should be used in correlation to the sensitivity of the data being encrypted. It is not necessary to encrypt information about a friend’s Saturday barbeque with a top secret NSA encryption algorithm, and it is not a good idea to send the intercepted KGB spy information using Pretty Good Privacy (PGP). Each type of encryption mechanism has its place and purpose. Even if the algorithm is very complex and thorough, there are other issues within encryption that can weaken the strength of encryption methods. Because the key is usually the secret value needed to actually encrypt and decrypt messages, improper protection of the key can weaken the encryption strength. An extremely strong algorithm can be used, using a large key space, and a large and random key value, which are all the requirements for strong encryption, but if a user shares her key with others, these other pieces of the equation really don’t matter. An algorithm with no flaws, a large key, using all possible values within a key space, and protecting the actual key are important elements of encryption. If one is weak, it can prove to be the weak link that affects the whole process.

2.4.3 Goals of Cryptosystems

Cryptosystems can provide confidentiality, authenticity, integrity, and non-repudiation services. It does not provide availability of data or systems. 

Confidentiality means that unauthorized parties cannot access information. 

Authenticity refers to validating the source of the message to ensure the sender is properly identified. 

Integrity provides assurance that the message was not modified during transmission, accidentally or intentionally. 

Nonrepudiation means that a sender cannot deny sending the message at a later date, and the receiver cannot deny receiving it. So if your boss sends you a message telling you that you will be receiving a raise that doubles your salary and it is encrypted, encryption methods can ensure that it really came from your boss, that someone did not alter it before it arrived to your computer, that no one else was able to read this message as it traveled over the network, and that your boss cannot deny sending the message later when he comes to his senses. Different types of messages and transactions require a higher degree of one or all of the services that encryption methods can supply. Military and intelligence agencies are very concerned about keeping information confidential, so they would choose encryption mechanisms that provide a high degree of secrecy. Financial institutions care about confidentiality, but care more about the integrity of the data being transmitted, so the encryption mechanism they would choose may differ from the military’s encryption methods. If messages were accepted that had a misplaced decimal point or zero, the ramifications could be far reaching in the financial institution world. Legal agencies may care more about the authenticity of messages that they receive. If information that was received ever needed to be presented in a court of law, its authenticity would certainly be questioned; therefore, the encryption method used should ensure authenticity, which confirms who sent the information.

2.3.4 Types of Ciphers:

There are two basic types of encryption ciphers: substitution and transposition (permutation). 

The substitution cipher replaces bits, characters, or blocks of characters with different bits, characters, or blocks. 

The transposition cipher does not replace the original text with different text, but moves the original text around. It rearranges the bits, characters, or blocks of characters to hide the original meaning.

2.4.4.1 Substitution Cipher:

A substitution cipher uses a key to know how the substitution should be carried out. In the Caesar Cipher, each letter is replaced with the letter three places beyond it in the alphabet. This is referred to as a shift alphabet. If the Caesar Cipher is used with the English alphabet, when George wants to encrypt a message of “FBI,” the encrypted message would be “IEL.” Substitution is used in today’s algorithms, but it is extremely complex compared to this example. Many different types of substitutions take place usually with more than one alphabet. This example is only meant to show you the concept of how a substitution cipher works in its most simplistic form.

2.4.4.2 Transposition Cipher:

In a transposition cipher, permutation is used, meaning that letters are scrambled. The key determines the positions that the characters are moved to, as illustrated in Figure 2.8.(33) This is a simplistic example of a transposition cipher and only shows one way of performing transposition. When introduced with complex mathematical functions, transpositions can become quite sophisticated and difficult to break. Most ciphers used today use long sequences of complicated substitutions and permutations together on messages. The key value is inputted into the algorithm and the result is the sequence of operations (substitutions and permutations) that are performed on the plaintext.

Simple substitution and transposition ciphers are vulnerable to attacks that perform frequency analysis. In every language, there are words and patterns that are used more often than others. For instance, in the English language, the words “the,” “and,” “that,” and “is” are very frequent patterns of letters used in messages and conversation. The beginning of messages usually starts “Hello” or “Dear” and ends with “Sincerely” or “Goodbye.” These patterns help attackers Figure out the transformation between plaintext to ciphertext, which enables them to Figure out the key that was used to perform the transformation. It is important for cryptosystems to not reveal these patterns.
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Figure 2.8: Transposition cipher

More complex algorithms usually use more than one alphabet for substitution and permutation, which reduces the vulnerability to frequency analysis. The more complicated the algorithm, the more the resulting text (ciphertext) differs from the plaintext; thus, the matching of these types of patterns becomes more difficult. Running and Concealment Ciphers I have my decoder ring, spyglasses, and secret handshake. Now let me Figure out how I will encrypt my messages.

More of the spy-novel-type ciphers would be the running key cipher and the concealment cipher. The running key cipher could use a key that does not require an electronic algorithm and bit alterations, but clever steps in the physical world around you. For instance, a key in this type of cipher could be a book page, line number, and word count. If I get a message from my super-secret spy buddy and the message reads “1 4967.29937.91158,” this could mean for me to look at the first book in our predetermined series of books, the 49th page, 6th line down the page, and the 7th word in that line. So I write down this word, which is “Cat.” The second set of numbers start with 2, so I go to the 2nd book, 99th page, 3rd line down, and write down the 7th word on that line, which is “is.” The last word I get from the 9th book in our series, the 11th page, 5th row, and 8th word in that row, which is “dead.” So now I have come up with my important secret message, which is “Cat is dead.” This means nothing to me and I need to look for a new spy buddy. Running key ciphers can be used in different and more complex ways, but I think you get the point. Another type of spy novel cipher is the concealment cipher. If my other super-secret spy buddy and I decide our key value is every third word, then when I get a message from him, I will pick out every third word and write it down. So if he sends me a message that reads, “The saying, ‘The time is right’ is not cow language, so is now a dead subject.” Because my key is every third word, I come up with “The right cow is dead.” This again means nothing to me and I am now turning in my decoder ring. No matter which type of cipher is used, the roles of the algorithm and key are the same, even if they are not mathematical equations. In the running key cipher, the algorithm states that encryption and decryption will take place by choosing characters out of a predefined set of books. The key indicates the book, page, line, and word within that line. In substitution cipher, the algorithm dictates that substitution will take place using a predefined alphabet or sequence of characters, and the key indicates that each character will be replaced with the third character that follows it in that sequence of characters. In actual mathematical structures, the algorithm is a set of mathematical functions that will be performed on the message and the key can indicate in which order these functions take place. So even if an attacker knows the algorithm, say the predefined set of books, if he does not know the key, the message is still useless to him.

We will briefly introduce the Data Encryption Standard (DES) and Simplified Data Encryption Standard (SDES) at next section.

2.5 Data Encryption Standard (DES):

DES is a block cipher ; it encrypts data in 64-bit blocks. A 64-bit block of plaintext goes in one end of the algorithm and a 64-bit block of ciphertext comes out the other end DES is a symmetric algorithm: The same algorithm and key are used for both encryption and decryption (except for minor differences in the key schedule). The key length is 56 bits. (The key is usually expressed as a 64-bit number, but every eighth bit is used for parity checking and is ignored. These parity bits are the least-significant bits of the key bytes.) The key can be any 56-bit number and can be changed at any time. A handful of numbers are considered weak keys, but they can easily be avoided. All security rests within the key.

At its simplest level, the algorithm is nothing more than a combination of the two basic techniques of encryption: confusion and diffusion. The fundamental building block of DES is a single combination of these techniques (a substitution followed by a permutation) on the text, based on the key. This is known as a round. DES has 6 rounds; it applies the same combination of techniques on the plaintext block 16 times (see Figure 2.9.).

The algorithm uses only standard arithmetic and logical operations on numbers of 64 bits at most, so it was easily implemented in late 1970s hardware technology. The repetitive nature of the algorithm makes it ideal for use on a special-purpose chip. Initial software implementations were clumsy, but current implementations are better.
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Figure2.9: Block diagram of DES.
2.6 Simplified Data Encryption Standard (SDES):

2.6.1 Introduction:

The well-known block cipher and Feistel structure based encryption algorithm, data encryption standard DES, designed by U.S. National Bureau of Standard has very complex structure. Its slow speed is not satisfied with the encryption requirement of images, which have large data. The key size is 56 bits and is not safe obviously. Edward Schaefer, professor at Santa Clara University proposed the simplified data encryption standard (S-DES). S-DES also adopts Feistel structure and its key size is 10 bits. It is not intended as a real time encryption tool, rather as a teaching tool. The plaintext and ciphertext are both 8 bits and it is consistent with bits, which the value of a pixel has. Comparing the DES, the structure of S-DES is simple and execution speed is fast, however the security is reduced.

The block diagram of S-DES is shown in Figure 2.10 [34]. The encryption algorithm involves five functions: an initial permutation (IP); a complex function called 4, which involves both permutation and substation operations and depends on a key input; switches (SW) that swaps two halves of the data; the function fk again, and an inverse permutation function (IP-1) that is the inverse of the initial permutation IP.

The middle column in the block is for the generation of two 8-bit keys from a given 10-bit key. P10 and P8 are for 10-bit and 8-bit permutations respectively. LS-1 is a circular left shift of 1 bit position, and LS-2 is a circular left shift of 2 bit positions.

2.6.2 Working of SDES

S-DES encryption (decryption) algorithm takes 8-bit block of plaintext (ciphertext) and a 10-bit key, and produces 8-bit ciphertext (plaintext) block. Encryption algorithm involves 5 functions: an initial permutation (IP); a complex function fK, which involves both permutation and substitution and depends on a key input; a simple permutation function that switches (SW) the 2 halves of the data; the function fK again; and finally, a permutation function that is the inverse of the initial permutation (IP-1). Decryption process is similar.

The function fK takes 8-bit key which is obtained from the 10-bit initial one two times. The key is first subjected to a permutation P10. Then a shift operation is performed. The output of the shift operation then passes through a permutation function that produces an 8-bit output (P8) for the first subkey (K1). The output of the shift operation also feeds into another shift and another instance of P8 to produce the 2nd subkey K2.
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Figure 2.10: Block diagram of S-DES

We can express encryption algorithm as superposition:
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Decryption is the reverse of encryption:
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We now examine S-DES in more details

2.6.3 S-DES key generation:

Scheme of key generation:

First, permute the 10-bit key k1,k2,..,k10:

P10(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)=(k3,k5,k2,k7,k4,k10,k1,k9,k8,k6)

Or it may be represented in such a form

Table 2.1: Permutation of P10

	P10

	3
	5
	2
	7
	4
	10
	1
	9
	8
	6


Each position in this table gives the identity of the input bit that
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Figure 2.11: Key generation of S-DES.

produces the output bit in this position. So, the 1st output bit is bit 3 (k3), the 2nd is k5 and so on. For example, the key (1010000010) is permuted to (1000001100).

Next, perform a circular shift (LS-1), or rotation, separately on the 1st 5 bits and the 2nd 5 bits. In our example, the result is (00001 11000)

	P8

	6
	3
	7
	4
	8
	5
	10
	9


Next, we apply P8, which picks out and permutes 8 out of 10 bits according to the following rule:

Table 2.2: Permutation of P8

The result is subkey K1. In our example, this yields (10100100)

We then go back to the pair of 5-bit strings produced by the 2 LS-1 functions and performs a circular left shift of 2 bit positions on each string. In our example, the value (00001 11000) becomes (00100 00011). Finally, P8 is applied again to produce K2. In our example, the result is (01000011)
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                        Figure 2.12: Detail of S-DES

The input to the algorithm is an 8-bit block of plaintext, which is permuted by IP function:

Table 2.3: Permutation of IP

	IP

	2
	6
	3
	1
	4
	8
	5
	7


At the end of the algorithm, the inverse permutation is used:

Table 2.4: Permutation of  IP-1
	IP-1

	4
	1
	3
	5
	7
	2
	8
	6


It may be verified, that IP-1(IP(X)) = X.

The most complex component of S-DES is the function fK, which consists of a combination of permutation and substitution functions. The function can be expressed as follows. Let L and R be the leftmost 4 bits and rightmost 4 bits of the 8-bit input to fK, and let F be a mapping (not necessarily one to one) from 4-bit strings to 4-bit strings. Then we let

 fK(L,R) = (L
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where SK is a subkey and 
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 is the bit-by-bit XOR operation. For example, suppose the output of the IP stage in Figure 2.12 is (1011 1101) and F(1101,SK) = (1110) for some key SK. Then fK(1011 1101) = (0101 1101) because (1011) 
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 (1110) = (0101).

We now describe the mapping F. The input is a 4-bit number (n1 n2 n3 n4). The 1st operation is an expansion/permutation:

Table 2.5: Permutation of  E/P

	E/P

	4
	1
	2
	3
	2
	3
	4
	1


For what follows, it is clearer to depict result in this fashion:

	n4
	n1
	n2
	n3

	n2
	n3
	n4
	n1


The 8-bit subkey K1 = (k11, k12, k13, k14, k15, k16, k17, k18) is added to this value using XOR:

	n4 ( k11
	n1 ( k12
	n2 ( k13
	n3 ( k14

	n2 ( k15
	n3 ( k16
	n4 ( k17
	n3 ( k18


Let us rename these bits:

	P0,0
	P0,1
	P0,2
	P0,3

	P1,0
	P1,1
	P1,2
	P1,3


The 1st 4 bits (1st row of the preceding matrix) are fed into the S-box S0 to produce a 2-bit output, and the remaining 4 bits (2nd row) are fed into S1 to produce another 2-bit output. These 2 boxes are defined as follows:

 0  1  2  3                         0   1  2 3
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The S-boxes operate as follows. The 1st and 4th input bits are treated as a 2-bit number that specify a row of the S-box, and the 2nd and 3rd input bits specify a column of the S-box. The entry in that row and column, in base 2, is the 2-bit output. For example, if (p00, p03) = (00) and (p01, p02) = (10), then the output is from row 0, column 2 of S0, which is 3, or (11) in binary. Similarly, (p10, p13) and (p11, p12) are used to index into a row and column of S1 to produce an additional 2 bits. 

Next, the 4 bits produced by S0 and S1 undergo a further permutation as follows:

Table 2.6: Permutation of  P4

	P4

	2
	4
	3
	1


The output of P4 is the output of function F.

The Switch Function

The function fK only alters the leftmost 4 bits of input. The switch function (SW ) interchanges the left and right bits so that the 2nd instance of fK operates on a different 4 bits. In the 2nd instance, the E/P, S0, S1, and P4 functions are the same. The key input is K2.

2.5.5 Analysis of simplified DES:

A brute-force attack on S-DES is feasible since with a 10-bit key there are only 1024 possibilities.

What about cryptanalysis? If we know plaintext (p1 p2 p3 p4 p5 p6 p7 p8) and respective ciphertext (c1 c2 c3 c4 c5 c6 c7 c8), and key (k1 k2 k3 k4 k5 k6 k7 k8 k9 k10) is unknown, then we can express this problem as a system of 8 nonlinear equations with 10 unknowns. The nonlinearity comes from the S-boxes. It is useful to write down equations for these boxes. For clarity, rename (p00, p01, p02, p03)=(a,b,c,d) and (p10, p11, p12, p13)=(w,x,y,z). Then the operation of S0 is defined in the following equations:

q=abcd+ab+ac+b+d

r=abcd+abd+ab+ac+ad+a+c+1

where all additions are made modulo 2. Similar equations define S1.

Let us show it. 

Table 2.7    Truth table for S0:

	
	q
	r
	a
	d
	b
	c

	0
	0
	1
	0
	0
	0
	0

	1
	0
	0
	0
	0
	0
	1

	2
	1
	1
	0
	0
	1
	0

	3
	1
	0
	0
	0
	1
	1

	4
	1
	1
	0
	1
	0
	0

	5
	1
	0
	0
	1
	0
	1

	6
	0
	1
	0
	1
	1
	0

	7
	0
	0
	0
	1
	1
	1

	8
	0
	0
	1
	0
	0
	0

	9
	1
	0
	1
	0
	0
	1

	10
	0
	1
	1
	0
	1
	0

	11
	1
	1
	1
	0
	1
	1

	12
	1
	1
	1
	1
	0
	0

	13
	0
	1
	1
	1
	0
	1

	14
	1
	1
	1
	1
	1
	0

	15
	1
	0
	1
	1
	1
	1
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Alternating linear maps with these nonlinear maps results in very complex polynomial expressions for the ciphertext bits, making cryptanalysis difficult.

2.6.5 Relationship to DES

DES operates on 64-bit blocks of input. The encryption scheme can be defined as
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(2.14)

A 56-bit key is used, from which 16 48-bit subkeys are calculated. There is an initial permutation of 56 bits followed by a sequence of shifts and permutations of 48 bits. 

Within the encryption algorithm, instead of F acting on 4 bits 
(n1 n2 n3 n4), it acts on 32 bits (n1 n2.. n32). After the initial expansion/permutation, the output of 48 bits can be diagrammed as

	n32
	n1   n2    n3     n4
	n5

	n4  
	n5   n6    n7     n8
	n9

	…
	…
	

	…
	
	

	…
	
	

	n28
	n29  n30  n31  n32
	n1


This matrix is added (XOR) to a 48-bit subkey. There 8 rows, corresponding to 8 S-boxes. Each S-box has 4 rows and 16 columns. The 1st and last bit of a row of the preceding matrix picks out a row of an S-box, and the middle 4 bits pick out a column.

2.7 Concept of Image Encryption:

Image encryption is a suitable method to protect image data. The encryption algorithms based on position confusion and pixel substitution change compression ratio greatly [35].

With the development of multimedia technology, the research on multimedia encryption, such as image, audio and video, becomes a hot topic. For the properties of large volumes and real-time requirement, multimedia data is difficult to be encrypted by traditional cryptographies directly [35].

Chaos presents two general principles, which have been already used for long time in classical encryption algorithm; these properties are confusion and diffusion. Confusion means that the transformation complicates the dependence of the statistics of the output on the statistics of the input. Diffusion means the spreading out of local information on the entire image, this means that a single input spreads out over many possible outputs. The sensitivity to initial conditions, which is the main characterization of chaos guarantees the diffusion property. In fact for chaotic maps, any set of initial conditions for which the map is chaotic will spread out over the entire phase space when the map evolves [37-38].

Most commonly, product ciphers employ both permutation and substitution ciphers as their component ciphers.

Permutation: Permutation as well can be key dependent or fixed. A key controlled permutation introduces dependence of the cipher text on the key. Fixed permutations are most usually part of diffusion mechanisms. Permutations are more complicated for software or hardware implemen​tation, and are rarely seen [39].

Substitution: The way a block of bits is substituted by another one defines a mapping. This mapping either depends on the key (or a part of it), or is fixed and does not depend on the key. Fixed mappings are used to accomplish diffusion (all output bits depend on the input bits) or nonlinearity (fixed mapping is nonlinear). Mappings that depend on the key accomplish key-diffusion, and most usually employ algebraic group operations which are easily implemented in hardware and software (XOR, addition and multiplication) [40].

2.8  Relationship between  chaos  and    cryptosystems

There appears to be a relationship between chaotic systems and symmetric block cryptosystems. Among other things, any good cryptosystem should:

1. Map plain-text to a random cipher-text. There should not be any patterns in the cipher-text, if the cryptosystem is good.

2. Be sensitive with respect to plain-text. This means that flipping one bit in the plain-text creates completely different cipher-text.

3. Be sensitive with respect to keys. A geometric interpretation of this flipping one bit in a key creates completely different cipher-text when applied to the same plain-text.

In addition to these requirements, it is a well known fact that virtually all symmetric block encryption methods are iterative schemes and work by iterating some basic encryption function several times. DES has 16 rounds, IDEA 8 rounds,  Blowfish 16 rounds,  Khufu and Khafre 24. Almost all symmetric ciphers are based on an iterative scheme called Feistel network. Feistel network transforms a block (L, R) according to the following invertible formula

Li+1 = Ri


Ri+1 = Li (  f (Ri , Ki ),

where f (. , .) is an arbitrary function of two bit strings, and Ki  is the subkey derived from a passphrase for the i-th iterative step. The operation ( is usually the bitwise XOR but could be some other operation. It is worth mentioning that many chaotic maps expressed in the form of a discrete mapping have the same structure as the Feistel network! For example, the standard map and the Hénon map [41] can be put into this form.

Now, let us list the basic properties of chaotic systems. A chaotic system is formed by some basic function f which is iterated (repeatedly applied) on some set X. Any chaotic system should:

a)  Be mixing. This means that the phase space X should be randomly mixed by repeated action of f. A precise mathematical concept of mixing can be found, for example, in [41].

b)  Be sensitive to initial conditions. This means that starting with a slightly modified initial state, one quickly obtains completely different states.

c)  Most chaotic systems depend on some control parameters and exhibit sensitivity with respect to those parameters. This means that a slight change in the parameters will generally cause a drastic change in the properties of the chaotic map.

By comparing 1. with a), 2. with b), and 3. with c) it becomes very obvious that encryption and chaos exhibit remarkably similar features if we consider that plain-text corresponds to an initial condition, key corresponds to parameters, and the encryption function corresponds to f. However, there is one important difference between these two concepts. Cryptosystems work on finite sets, while chaotic systems only have meaning on a continuum, an infinite set. This is probably the main reason why the relationship between chaos and encryption went unnoticed for such a long time. One of the goals of our future research is to establish a formal relationship between chaos and cryptosystems, and use this connection to enrich both fields. Encryption would readily benefit because one could use a large number of powerful mathematical tools previously developed for nonlinear dynamic systems. For example, we could use the concept of Lyapunov number to quantify diffusion in cryptosystems. The minimal number of iterations for any given cryptosystem is usually estimated by the designers and there is no general method which would guide us as to how many iterations are actually needed to guarantee a secure cipher. For example, IDEA has 8 rounds, but it is generally accepted that as few as 6 or even 4 produce a safe cipher as well. Why the designers have chosen 8 and not 6? How can we justify the number of iterations in an encryption scheme? How many iterations are necessary for our chaos-based encryption method? The concept of Kolmogorov entropy from the theory of dynamic systems might help us answer these questions. Kolmogorov entropy measures the rate with which information about initial conditions is lost in the course of iterations. In addition to the applications stated above, we expect that a successful connection between encryption and discretized chaos would lead to new attacks for breaking symmetric ciphers and to new cryptanalytic techniques.

On the other hand, the impact of cryptanalytic theoretical tools in chaos theory can only be guessed right now. It seems that symbolic dynamics would be the candidate number one for this type of application.

The main problem that needs to be solved is a correct generalization of chaos from a continuum to finite sets. Although the size of the sets will usually be of the order of 264 or 2128 (the typical size of all possible encryption blocks), the sets are nevertheless finite. Any definition of chaos on finite sets should merge with the classical definition as the number of elements tends to infinity. This correspondence principle will be the guide of our research. One possible approach towards the definition of chaos on finite sets is using symbolic dynamics and the concept of randomness on finite sets. 
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Chapter 3
 FORMULATION OF Proposed Algorithm 
3.1 The proposed Algorithm

Applying Cat map only cannot meet the demand of the encryption, it only transforms the original image's pixel positions and pixels' values have not been changed. The original image can be recovered via the method of exhaustion. It is necessary to modify the pixels' values to realize double encryption. Block-cipher algorithms DES, 2DES, 3DES, RSA, El Gamal etc. are not appropriate in image-encryption. S-DES algorithm encrypts single byte in the image. Combining Cat map with S-DES system can enhance the security of the system.


 Figure 3.1: Block diagram of proposed algorithm.

The block diagram of the proposed method is shown in Figure 3.1. It consists of two stages. 

The first stage is called confusion stage that permutes the pixels in the image without changing its values by applying Cat map algorithm. It consists of n (1<n<N) rounds. 

The second stage is called diffusion stage that modifies pixels values in the image by applying S-DES algorithm to every pixel. The whole confusion-diffusion stage is repeated for a number of times to achieve a satisfactory level of security. The parameters of Cat map governing the permutation and diffusion should be different in different rounds.

The image encryption algorithm includes two steps:

(i) 
Encryption by Arnold Cat map

(ii)
Encryption by S-DES

3.2  Encryption by Arnold Cat map:

Image data have strong correlations among adjacent pixels. Statistical analysis on large amounts of images shows that averagely adjacent 8 to 16 pixels are correlative in horizontal, vertical and also diagonal directions for both natural and computer-graphical images. In order to disturb the high correlation among pixels, we adopt Arnold Cat map to scramble the pixel positions of the plain-image. Without loss of generality, we assume the dimension of the original grayscale image I is N × N. The coordinates of the pixels are

S = {(x ,y ) | x,y = 0, 1,2,...,N - 1}. Arnold Cat map is described as [30]
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(3.1)
where a and b are positive integers, det(A) = 1. The map is area-preserving since the determinant of its linear transformation matrix equals (1). The
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 is the new position of the original pixel position (x, y) when Arnold Cat map is performed once. Iterated actions of A on a pixel 
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where n = 0,1, 2,.... The set of points {r0 ,r1 ,r2,...}is an orbit of the system with a period, i.e., there exist positive integers T and n0 , such that 
[image: image200.wmf]+

==++

000

,,1,2,.......

nTn

rrnnnn

 The period T depends on the parameters a, b and the size N of the original image. Thus the parameters a, b and the number of iterations M all can be used as the secret keys. Since there only exists a linear transformation and mod function, it is very efficient to scramble the pixel positions using the Arnold Cat map. After several iterations, the correlation among the adjacent pixels can be disturbed completely. Some experiments are given of Arnold Cat map. However, the periodicity of Arnold Cat map should degrade the security of the encryption, because the possible attacks may iterate the Arnold Cat map continuously to reappear the original plain image

3.3.  Encryption by  S-DES ALGORITHM: 

The SDES [8] encryption algorithm takes an 8-bit block of  plaintext and a 10-bit key as input and produces an 8-bit  block of ciphertext as output. The decryption algorithm takes an 8-bit block of ciphertext and the same 10-bit key used as input to produce the original 8-bit block of plaintext. The encryption algorithm involves five functions; an initial permutation (IP), a complex function called fK  which involves both permutation and substitution operations and depends on  a key input; a simple permutation function that switches (SW)  the two halves of the data; the function fK   again, and a permutation  function that is the inverse of the initial  permutation (IP-1 ). 

The function fK takes as input the data passing through the encryption algorithm and an 8-bit key. Consider a 10-bit key from which two 8-bit subkeys are generated. In this case, the key is first subjected to a permutation P10= [3 5 2 7 4 10 1 9 8 6], then a shift operation is performed. The numbers in the array represent the value of that bit in the original 10-bit key. The output of the shift operation then passes through a permutation function that produces an 8-bit output P8=[6 3 7 4 8 5 10 9] fo r the first sub key (K1). The output of the shift operation also feeds into another shift and another instance of P8 to produce the second subkey K2.In all bit strings, the leftmost position corresponds to the first bit.  

Encryption involves the sequential application of five functions: 

1. Initial and final permutation (IP) 

The input to the algorithm is an 8-bit block of plaintext, which we first permute using the IP function 

IP= [2 6 3 1 4 8 5 7].This retains all 8-bits of the plaintext but mixes them up. At the end of the algorithm, the inverse permutation is applied; the inverse permutation is done by applying, IP-1  = [4 1 3 5 7 2 8 6] where we have IP-1(IP(X)) =X. 

2. The function fk, which is the complex component of SDES,  consists of a combination of permutation and substitution functions. The functions are given as follows. 

Let L, R be the left 4-bits and right 4-bits of the input, then, 

fK  (L, R) = (L XOR f(R, key), R) 

where XOR is the exclusive-OR operation and key is a sub -

key. Computation of f(R, key) is done as follows. 

1. Apply expansion/permutation E/P= [4 1 2 3 2 3 4 1] to  input 4-its. 

2. Add the 8-bit key (XOR). 

3. Pass the left 4-bits through S-Box S0  and the right 4-b its      through S-Box S1 . 

4. Apply permutation P4 = [2 4 3 1].  

The two S-boxes are defined as follows: 

          S0        

          S1 
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The S-boxes operate as follows: 

The first and fourth input bits are treated as 2-bit numbers that specify a row of the S-box and second and third input bits specify a column of the S-box. The entry in that row and column in base 2 is the 2-bit output. 

 3. Since the function fK allows only the leftmost 4-bits of the   input, the switch function (SW) interchanges the left and right 4-bits so that the second instance of fK operates on different 4-bits. In this second instance, the E/P, S0, S1 and P4 functions are the same as above but the key input is K2. 
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Chapter 4
EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL RESULTS
Performance analyses of the proposed image encryption scheme are provided in this section. The plain image Lena of size 512 × 512 and 256 gray levels is employed for experimentation. The original image is shown in Figure 4.1(a); its histogram is given in Figure 4.1(b). 







Figure 4.1 (a) Original image, (b) Histogram of original image (c) Scrambled image, (d) Histogram of scrambled image (e) Scrambled and encrypted image, (f) Histogram of scrambled and encrypted image.

The histogram of the original image shows that the image is predominant with black pixels and has less number of white pixels. Figure 4.1(c) is the image obtained after fifty round of confusion process on the Lena image for the control parameters a = 1 and b = 1. It has periodicity at 384 for parameters a = 1, b = 1 and N= 512. The corresponding histogram is shown in Figure 4.1(d). It was observed from Figure 4.1(b) and Figure 4.1(d) that both histograms are same. It means that the corresponding statistical information depicted in Figure 4.1(d) after confusion process is exactly the same as that of the plain image. It is due to the fact that Cat map does not change the pixel values of the image.

The result shown in Figure 4.1(e) is encrypted image obtained after fifty rounds of confusion process and one round of diffusion process. The corresponding histogram is shown in Figure 4.1(f). It is more uniform. It was observed that this histogram is entirely different from one shown in Figure 4.1(b), which conveys that the original pixel values have been modified randomly due to the application of S-DES.

Results were taken on different images, including Lena, Mandrill, Barbara, Golden Gate, Tree, Tulips, Miramar, House, and Car. These results are shown in Appendix.
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Chapter 5

CONCLUSIONS and future works
In this dissertation, an encryption scheme based on the combination of chaotic Cat map for the scrambling the addresses of the pixels and simplified data encryption standard for the encryption of the corresponding pixels' values, for the better security of the image is proposed. The results were taken by using gray-scale images only. Enough confusion and diffusion effect was produced due to the combination of the chaotic Cat map and simplified data encryption standard. The experimental tests were carried out and the results show the effectiveness of the scheme.

The future plans of the scheme are to extend the present work for the colour and three-dimensional images.
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Sample results of a simple image Lena in Figure (a) of size 512 x 512 and 256 gray levels is used in the experiment:
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 (a)

The results shown in Figure  (b) is encrypted image obtained after one round of confusion (Cat chaos).
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 (b)

The results shown in Figure (c) is encrypted image obtained one round of diffusion process (SDES).
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 (c)

The results shown in Figure  (d) is encrypted image obtained after fifty rounds of confusion process (Cat chaos) and one round of diffusion process (SDES).
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 (d)

Figure A.1: Scrambled and Encrypted image (a),(b),(c), (d)

Airplane image with corresponding scrambled & encrypted images and decrypted images are shown below:
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Figure A.2 (a)
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Figure A.2 (b)
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Figure A.2 (c)
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Figure A.2 (d)

[image: image211.png]Decrypted SDES.AT CHAOS





Figure A.2 (d)

Figure A.2 :(a)  Original image (b) Encrypted image using SDES (c) Scrambled using CAT chaos and Encrypted image using SDES (d) Decrypted image by SDES (e) Decrypted image by SDES and Cat chaos.
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Figure 4.1 (e)





Figure 4.1 (f)
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